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A B S T R A C T

This work introduces a redefinition of the classic rank query, tradi-
tionally applied to bitvectors and strings, for Directed Acyclic Graphs
(DAGs). We present a novel succinct data structure that leverages
the topology of the input DAG to efficiently support these general-
ized queries while maintaining space usage below the entropy of the
original graph (as there is no need to keep the whole graph to an-
swer the queries). Our approach targets node-weighted DAGs and
incorporates a critical algorithmic component: solving a generalized
prefix-sum problem along DAG paths. These prefix sums, computed
recursively from the root, encapsulate essential meta-information that
underpins the succinct representation. The outcome of a query is ex-
pressed as a collection of ranges [l, r], each representing a contiguous
span of values reachable from the queried node. These ranges cap-
ture all possible accumulations (sums) of information derived from
paths that originate at the source of the DAG and end at the queried
node.
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1
I N T R O D U C T I O N

1.1 why succinct data structures?

The digital age is characterized by an exponential and seemingly
boundless increase in data generation and collection. This phenomenon,
while not new, has dramatically shifted in scale and nature over time.
We have progressed from early structured databases and text digitiza-
tion to the vast heterogeneity of the World Wide Web. Subsequently,
major scientific endeavors began producing unprecedented data vol-
umes: consider genomics projects sequencing DNA, large-scale cli-
mate simulations, or astronomical observatories surveying the cos-
mos. The rise of social networks then turned billions of users into
continuous producers of content (text, images, video) and relational
data. More recently, the Internet of Things (IoT) has deployed sen-
sors capturing real-time environmental and operational data, while
the ascent of Large Language Models (LLMs) and generative AI re-
lies on training over astronomical datasets and necessitates efficient
representations for the models themselves.

This relentless data production often outpaces our ability to process
it effectively. While storage technology (hard drives, SSDs, cloud stor-
age) continually improves, allowing us to archive petabytes and ex-
abytes, a persistent bottleneck remains the main memory (RAM) ca-
pacity of computers. Accessing data in RAM is crucial for perfor-
mance, being orders of magnitude faster (typically a factor of ∼ 105)
than accessing secondary storage [41]. Consequently, fitting the nec-
essary data - and critically, the auxiliary structures built upon it - into
RAM is vital for countless data-intensive applications.

Indeed, the challenge frequently lies not just with the size of the raw
data, but with the footprint of the data structures required for effi-
cient querying and manipulation. Classical indices, trees, graphs, and
other structures, while enabling fast operations, can demand signif-
icantly more space than the data they represent - sometimes one or
two orders of magnitude larger. The human genome is a compelling
example: the sequence of roughly 3.3 billion bases can be stored in
under 800 megabytes using a simple 2-bit encoding. However, pow-
erful structures like suffix trees, essential for many pattern matching
and sequence analysis tasks, can easily consume tens of gigabytes,
exceeding the RAM capacity of typical machines [41].
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Several paradigms exist to cope with massive datasets: secondary-
memory algorithms optimizing disk access, streaming algorithms pro-
cessing data "on the fly" with limited memory, and distributed algo-
rithms partitioning data and computation across clusters. Each has
strengths and limitations, often involving trade-offs in performance,
accuracy, or applicability. Furthermore, the proliferation of devices
with constrained computational and memory resources (from smart-
phones to embedded sensors) creates scenarios where space is a pri-
mary constraint.

Data compression offers a well-established method for reducing stor-
age space. However, most compression algorithms require full or
partial decompression before the data can be randomly accessed or
queried, making them unsuitable for tasks requiring direct interac-
tion with the compressed form. This is precisely where Succinct Data
Structures emerge as a powerful alternative. Situated at the intersec-
tion of Data Structures and Information Theory, they aim to repre-
sent data using space close to its theoretical minimum (often related
to information-theoretic measures like entropy) while simultaneously
supporting efficient queries directly on the compressed representa-
tion [41].

Succinct data structures strive to achieve the best of both worlds: the
space efficiency of compression and the operational efficiency of tra-
ditional data structures. By compressing both the data itself and the
indexing overhead needed to query it, they enable larger datasets and
more complex structures to fit within faster levels of the memory hi-
erarchy (e.g., cache instead of RAM, RAM instead of disk). This not
only facilitates solving larger problems on a single machine but can
also yield performance improvements due to better memory locality
and reduced data transfer costs.

1.2 results and contributions

This thesis introduces a novel representation for node-weighted Di-
rected Acyclic Graphs (DAGs), specifically designed to efficiently sup-
port path-based aggregation queries.

Building upon foundational concepts in data compression (Chapter 2)
and established succinct techniques for sequences, particularly Rank
and Select operations (Chapter 3), this work addresses the challenge
of managing potentially complex path information in weighted DAGs.
A key motivation stems from the observation that problems like query-
ing occurrences within degenerate strings (Section 3.3) can be effec-
tively modeled using weighted DAGs (Chapter 4), but the application
extends to other domains involving path analysis in acyclic graph
structures.
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The core technical contribution, presented in Chapter 4, is a space-
efficient DAG representation that supports a generalized rank query
(4.9). This query aims to characterize the set of possible cumulative
weights achievable on paths from a source vertex to a target vertex N,
considering the contribution of N’s weight itself.

Our approach hinges on a strategic partitioning of the DAG’s vertices
into explicit nodes (VE, whose path weight information is stored di-
rectly) and implicit nodes (VI). For implicit nodes, the path weight
information (O-sets, 4.5) is reconstructed on demand by following a
path defined by a carefully chosen successor function σ (4.11). This
traversal relies on compact offset sequences (Iv) stored for each im-
plicit node v, which map indices in Ov to indices in the O-set of its
successor σ(v). We provide algorithms (GetValue at 10, GetOSet at
11) for reconstructing O-set information (Section 4.3.1) and comput-
ing the final rank query (Section 4.3.2) based on this representation.

A crucial aspect is the analysis of compression strategies for the struc-
ture’s components (Section 4.4), including vertex weights, successor
information, and the associated data sequences (Ov and Iv). We lever-
age techniques like variable-length integer coding (potentially using
implementations like those discussed in Appendix A), Elias-Fano cod-
ing for monotonic sequences (Section 2.6.4), and Run-Length Encod-
ing (RLE) to minimize space (Section 4.4.2).

Significantly, we show (Section 4.5) that the space usage of our pro-
posed structure can be substantially lower than the theoretical 0th-
order entropy bound required for a lossless representation of the en-
tire input graph G = (V ,E,w). This efficiency is achieved because
our structure is specifically tailored to the rank query and does not
need to store the full graph topology (all edges E), thereby offering
a highly space-efficient solution for its designated task compared to
both general-purpose graph encodings and naive precomputation ap-
proaches.

1.3 structure of the thesis

This thesis is organized as follows. Chapter 1, the current chapter,
provides the motivation for studying succinct data structures, out-
lines the main contributions of this thesis concerning succinct rep-
resentations for weighted DAGs, and describes the overall structure
of the document. Chapter 2 then lays the theoretical groundwork by
reviewing fundamental concepts from information theory and essen-
tial compression techniques relevant for building compact represen-
tations, such as entropy, source coding, integer coding, and statisti-
cal coding. Following this, Chapter 3 introduces core building blocks
used in many succinct data structures, focusing on Rank and Select
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operations, their implementation on bitvectors and wavelet trees, and
their application to degenerate strings. The primary research contri-
bution is presented in Chapter 4, which details the proposed suc-
cinct representation for weighted DAGs, including the mathematical
framework, the structure itself, query algorithms, compression strate-
gies, and space efficiency analysis. Chapter 5 summarizes the findings
and contributions, discusses limitations, and proposes future research
directions aimed at enhancing query time predictability. Finally, Ap-
pendix A provides practical implementation details for a compressed
integer vector structure supporting efficient random access, comple-
menting the theoretical discussion of compression techniques.



2
C O M P R E S S I O N P R I N C I P L E S A N D M E T H O D S

Entropy fundamentally represents the minimal average number of
bits required to encode information from a source. In the context of
uniquely identifying objects within a set U, a related concept is the in-
formation content required, which serves as a fundamental measure
of the space needed in compressed data representations. The primary
goal of compressed data structures is to occupy space close to this the-
oretical lower bound, while simultaneously enabling efficient query
operations. This balance between storage efficiency and query respon-
siveness is central to optimizing data compression techniques.

Numerous compression techniques exist, yet they often share certain
fundamental steps. Figure 1 illustrates typical processes employed for
data compression. These procedures depend on the nature of the data,
and the specific arrangement or combination of the blocks shown may
differ. Numerical manipulation, such as predictive coding and linear
transformations, is commonly employed for waveform signals like im-
ages and audio. Logical manipulation involves transforming the data
into a format more amenable to compression, including techniques
such as run-length encoding, zero-trees, set-partitioning information
representations, and dictionary methods. Subsequently, source mod-
eling is used to estimate the data’s statistical properties, which is cru-
cial for effective entropy coding.

Original
Data

Data
Processing

Logical
Processing

Source
Modelling

Entropy
Coding

Compressed
Data

Figure 1: Typical processes in data compression

These initial numerical and logical processing stages typically aim to
transform the data, exploiting specific properties like signal correla-
tion or symbol repetition, to reduce specific forms of redundancy and
produce a representation more amenable to statistical compression
(e.g., yielding symbols with a more skewed frequency distribution
or more predictable patterns). A common feature among most com-
pression systems is the incorporation of entropy coding as the final
process, wherein the processed information is represented in a highly

5
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compact form. This stage can significantly impact the overall com-
pression ratio, as it performs the final reduction in data size based
on the modeled statistics. In this chapter, we examine the principles
of entropy coding, exploring the fundamental concepts and methods
that underpin this crucial stage of data compression.

2.1 worst-case entropy

When considering the task of assigning a unique identifier (code, see
Section 2.3) to every element of a finite set U, a baseline measure
of the required information content is the logarithm of the set size.
If we constrain the codes to all have the same length l, then l must
be at least ⌈log2 |U|⌉ bits to distinguish all elements. The theoretical
minimum information content per element, expressed in bits, without
the constraint of integer code lengths or specific coding schemes, is
defined as the worst-case entropy of U [10]

Hwc(U) = log2 |U| (1)

where |U| denotes the number of elements in the set U. The term
"worst-case" here refers to the scenario where no probability distri-
bution over the elements is assumed (or equivalently, a uniform dis-
tribution is assumed), and we seek the theoretical limit for encoding
based solely on the set size.

Remark 2.1. If fixed-length binary codes are used, their length l must
be an integer. To assign a unique code to each of the |U| elements,
we require 2l ⩾ |U|. Taking the logarithm base 2 gives l ⩾ log2 |U|.
Since l must be an integer, the minimum required length is lmin =

⌈log2 |U|⌉ ⩾ Hwc(U).

Example 2.2. Let Tn denote the set of all general ordinal trees [4] with
n nodes. In this scenario, each node can have an arbitrary number of
children, and their order is distinguished. With n nodes, the number
of possible ordinal trees is the (n− 1)-th Catalan number, given by:

|Tn| = Cn−1 =
1

n

(
2n− 2

n− 1

)
Using the known asymptotic approximation for Catalan numbers de-
rived from Stirling’s formula, for large n:

|Tn| = Cn−1 ≈
4n−1

√
π(n− 1)3/2

=
4n

4
√
π(n− 1)3/2

=
4n

n3/2
Θ(1)
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Hwc(Tn) = log2 |Tn|

= log2

(
4n

n3/2
Θ(1)

)
= 2n−Θ(log2 n)

Thus, we have determined the minimum number of bits required to
uniquely identify (encode) a general ordinal tree with n nodes based
solely on their count.

2.2 entropy

We now introduce the concept of entropy as a measure of uncertainty
of a random variable. While the worst-case entropy Hwc, discussed
previously, provides a lower bound based solely on the set’s cardinal-
ity (effectively assuming fixed-length codes or a uniform probability
distribution over the elements), Shannon entropy offers a more re-
fined measure. It accounts for the actual probability distribution of
the elements, quantifying the average uncertainty or information con-
tent associated with the random variable. A deeper explanation can
be found in standard texts such as [10, 24, 41].

Definition 2.3 (Entropy of a Random Variable). Let X be a random vari- This is also known
as Shannon entropy,
named after Claude
Shannon, who
introduced it in his
seminal work [54]

able taking values in a finite alphabet X with the probabilistic distribution
PX(x) = Pr{X = x} (x ∈ X). Then, the entropy of X is defined as

H(X) = H(PX)
def
= EPx

{− logPX(x)} = −
∑
x∈X

PX(x) logPX(x)

Here, EPX
[·] denotes the expectation with respect to the probability

distribution PX. The logarithm is taken to base 2, and entropy is ex-
pressed in bits. From the definition, it follows that the entropy of a
discrete random variable is always non-negative1. .

Example 2.4. [Toss of a fair coin] Let X be a random variable repre-
senting the outcome of a fair coin toss, with X = {Heads, Tails}. The
probability distribution is PX(Heads) = PX(Tails) = 1

2 . The entropy
of X is:

H(X) = −
1

2
log2

1

2
−

1

2
log2

1

2
= −

1

2
(−1) −

1

2
(−1) = 1 bit

This result aligns with the intuition that one bit is required to convey
the outcome of a fair coin toss.

1 The entropy is zero if and only if X is deterministic, i.e., PX(x) = 1 for some single
value x = c.
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Remark 2.5. By convention, H(X) denotes the entropy of the random
variable X. It is important to note that entropy is not a function of
the random variable itself, but rather a functional of its probability
distribution PX. It depends only on the probabilities of the values,
not the values themselves.

The entropy H(X) quantifies the average uncertainty associated with
the random variable X. It can be interpreted as the average amount
of information (in bits) gained upon observing an outcome of X, or
equivalently, the minimum average number of bits required to encode
the outcomes of X using an optimal compression scheme.

2.2.1 Properties

Having introduced the entropy for a single random variable X, we
now consider the case of two random variables X and Y. To quan-
tify the total uncertainty associated with the pair (X, Y) considered
together, we define the joint entropy:

Definition 2.6 (Joint Entropy). Let (X, Y) be a pair of discrete random
variables (X, Y) with a joint distribution PXY(x,y) = Pr{X = x, Y = y}.
The joint entropy of (X, Y) is defined as

H(X, Y) = H(PXY) = −
∑
x∈X

∑
y∈Y

PXY(x,y) logPXY(x,y)

This definition extends naturally to the joint entropy of n random
variables (X1,X2, . . . ,Xn) as H(X1, . . . ,Xn).

We also define the conditional entropy H(Y|X), which measures the
remaining uncertainty about Y when X is known. It is the expected
value of the entropies of the conditional distributions PY|X(y|x), aver-
aged over X.

Often, it’s helpful to conceptualize the relationship between Y and X

in terms of information transmission. Given X = x, the conditional
probability PY|X(y|x) = Pr{Y = y|X = x} describes the likelihood of
observing Y = y. The collection of these conditional probabilities for
all x ∈ X and y ∈ Y defines a statistical relationship often referred to
as a channel with input alphabet X and output alphabet Y.
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Definition 2.7 (Conditional Entropy). Let (X, Y) be a pair of discrete
random variables with a joint distribution PXY(x,y) = Pr{X = x, Y = y}.
The conditional entropy of Y given X is defined as

H(Y|X) = H(W|PX)
def
=

∑
x

PX(x)H(Y|x)

=
∑
x∈X

PX(x)
{
−

∑
y∈Y

W(y|x) logW(y|x)
}

= −
∑
x∈X

∑
y∈Y

PXY(x,y) logW(y|x)

= EPXY
{− logW(Y|X)}

Since entropy is non-negative, and H(Y|X) is an average of non-negative
entropies H(Y|X = x), conditional entropy is also non-negative: H(Y|X) ⩾
0. Furthermore, H(Y|X) = 0 if and only if Y is completely determined
by X (i.e., Y = f(X) for some deterministic function f with probability
one).

The relationship between joint and conditional entropy is established
by the chain rule.

Theorem 2.8 (Chain Rule). Let (X, Y) be a pair of discrete random vari- This is also known
as additivity of
entropy.

ables with a joint distribution PXY(x,y). Then, the joint entropy of (X, Y)
can be expressed as

H(X, Y) = H(X) +H(Y|X)

Proof. From the definition of conditional entropy (2.7), we have

H(X, Y) = −
∑
x,y

PXY(x,y) logW(y|x)

= −
∑
x,y

PXY(x,y) log
PXY(x,y)
PX(x)

= −
∑
x,y

PXY(x,y) logPXY(x,y) +
∑
x,y

PX(x) logPX(x)

= H(X,Y) +H(X)

Where we used the relation

W(y|x) =
PXY(x,y)
PX(x)

When PX(x) ̸= 0.

Corollary 2.9.

H(X, Y|Z) = H(X|Z) +H(Y|X,Z)
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Proof. The proof is analogous to the proof of the chain rule.

Corollary 2.10.

H(X1,X2, . . . ,Xn) = H(X1) +H(X2|X1) +H(X3|X1,X2)

+ . . .+H(Xn|X1,X2, . . . ,Xn−1)

Proof. We can apply the two-variable chain rule in repetition obtain
the result.

2.2.2 Mutual Information

Having defined measures for the uncertainty of individual variables
(H(X)), pairs (H(X, Y)), and conditional uncertainty (H(Y|X)), we can
quantify the amount of information that one variable provides about
another. This is the mutual information, I(X; Y). It represents the re-
duction in uncertainty about X obtained by learning the value of Y,
or vice versa. Figure 2 provides a visual representation.

Definition 2.11 (Mutual Information). Let (X, Y) be a pair of discrete ran-
dom variables with a joint distribution PXY(x,y). The mutual information
between X and Y is defined as

I(X; Y) = H(X) −H(X|Y) (1)

Using the chain rule (2.8), we can rewrite it as

I(X; Y) = H(X) −H(X|Y)

= H(X) +H(Y) −H(X, Y) (2)

= −
∑
x

PX(x) logPX(x) −
∑
y

PY(y) logPY(y)

+
∑
x,y

PXY(x,y) logPXY(x,y) (3)

=
∑
x,y

PXY(x,y) log
PXY(x,y)
PX(x)PY(y)

(4)

= EPXY

{
log

PXY(x,y)
PX(x)PY(y)

}
(5)

It follows immediately that the mutual information is symmetric,
I(X; Y) = I(Y;X).
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I(X; Y)
H(Y) H(X)

Figure 2: Mutual information between two random variables X and Y.

2.2.3 Fano’s inequality

Information theory provides fundamental limits on data processing
tasks, including compression and inference. It allows us to establish
lower bounds on the probability of error when estimating one ran-
dom variable based on observations of another. Fano’s inequality re-
lates the conditional entropy H(X|Y) to the probability of error when
estimating X from Y. Recall that H(X|Y) = 0 if and only if X is a
function of Y, meaning X can be determined from Y with zero error.
Fano’s inequality bounds the error probability when H(X|Y) > 0.

Theorem 2.12 (Fano’s Inequality). Let X and Y be two discrete random
variables with X taking values in some discrete alphabet X, we have

H(X|Y) ⩽ Pr{X ̸= Y} log(|X|− 1) + h(Pr{X ̸= Y})

where h(p) = −p logp− (1− p) log(1− p) is the binary entropy function.

Proof. Let Z be a random variable defined as follows:

Z =

1 if X ̸= Y

0 if X = Y

We can then write

H(X|Y) = H(X|Y) +H(Z|XY) = H(XZ|Y)

= H(X|YZ) +H(Z|Y)

⩽ H(X|YZ) +H(Z) (6)

The last inequality follows from the fact that conditioning reduces
entropy. We can then write

H(Z) = h(Pr{X ̸= Y}) (7)

Since ∀y ∈ Y, we can write

H(X|Y = y,Z = 0) = 0
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and

H(X|Y = y,Z = 1) ⩽ log(|X|− 1)

Combining these results, we have

H(X|YZ) ⩽ Pr{X ̸= Y} log(|X|− 1) (8)

From equations 6, 7 and 8, we have Fano’s inequality.

Fano’s inequality thus provides a tangible link between the condi-
tional entropy H(X|Y), which quantifies the remaining uncertainty
about X when Y is known, and the minimum probability of error
achievable in any attempt to estimate X from Y. This inequality, along
with the foundational concepts of entropy, joint entropy, conditional
entropy, and mutual information introduced throughout this section,
establishes a robust theoretical framework. These tools are not merely
abstract measures; they allow us to quantify information, understand
dependencies between data sources, and ultimately, to delineate the
fundamental limits governing how efficiently data can be represented
and compressed. Understanding these limits is essential as we go
deeper into specific encoding techniques.

2.3 source and code

In the previous section, information-theoretic limits based on the
probabilistic nature of data sources were established. Attention now
turns to the practical mechanisms for achieving data compression:
the interplay between a source of information and the code used to
represent it. A source, in this context, is any process generating a
sequence of symbols drawn from a specific alphabet (e.g., letters of
text, pixel values in an image, sensor readings). Source coding, or
data compression, involves converting this sequence into a different,
typically shorter, sequence of symbols from a target coding alphabet
(often binary).

The core principle behind efficient coding is the exploitation of the
source’s statistical properties. Symbols or patterns occurring frequently
should ideally be assigned shorter representations (codewords), while
less frequent ones can be assigned longer codewords. A classic, intu-
itive example is Morse code: the most common letter in English text,
E, is represented by the shortest possible signal, a single dot, whereas
infrequent letters like Q receive much longer sequences.
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2.3.1 Codes

A source characterized by a random process generates symbols from
a specific alphabet at each time step. The objective is to transform
this output sequence into a more concise representation. This data re-
duction technique, known as source coding or data compression, utilizes
a code to represent the original symbols more efficiently. The device
performing this transformation is termed an encoder, and the process
itself is referred to as encoding [24].

Definition 2.13 (Source Code). A source code for a random variable X is
a mapping from the set of possible outcomes of X, denoted X, to D∗, the set
of all finite-length strings of symbols from a D-ary alphabet. Let C(x) denote
the codeword assigned to x, and let l(x) denote the length of C(x).

Definition 2.14 (Expected length). The expected length L(C) of a source
code C for a random variable X with probability mass function PX(x) is
defined as

L(C) =
∑
x∈X

PX(x)l(x)

where l(x) is the length of the codeword assigned to x.

For simplicity, we assume the D-ary alphabet is D = {0, 1, . . . ,K− 1},
where K = |D|.

Example 2.15. Consider a source code for a random variable X with
X = {a,b, c,d} and PX(a) = 0.5, PX(b) = 0.25, PX(c) = 0.125, and
PX(d) = 0.125. The code is defined as

C(a) = 0

C(b) = 10

C(c) = 110

C(d) = 111

The entropy of X is

H(X) = −0.5 log2 0.5−0.25 log2 0.25−0.125 log2 0.125−0.125 log2 0.125 = 1.75 bits

The expected length of this code is also 1.75:

L(C) = 0.5 · 1+ 0.25 · 2+ 0.125 · 3+ 0.125 · 3 = 1.75 bits

This example presents a code that achieves the lower bound given by
the entropy, as L(C) = H(X).
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Definition 2.16 (Nonsingular Code). A code is nonsingular if every ele-
ment of the range of X maps to a different element of D∗. Thus:

x ̸= y =⇒ C(x) ̸= C(y)

Although a nonsingular code ensures distinct representations for indi-
vidual source symbols, the primary objective is often the transmission
of sequences of these symbols. This potential inefficiency motivates
the use of codes where the structure inherently delineates codeword
boundaries, eliminating the need for explicit separators. Such codes
are often referred to as prefix codes or instantaneous codes. These
codes possess a property where the structure itself indicates the end
of each codeword. The following definitions formalize this concept
[10].

Definition 2.17 (Extension of a Code). The extension C∗ of a code C is
the mapping from finite-length sequences of symbols from X to finite-length
strings of symbols from the D-ary alphabet defined by

C∗(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn)

where C(x1)C(x2) . . . C(xn) denotes the concatenation of the codewords as-
signed to x1, x2, . . . , xn.

Example 2.18. If C(x1) = 0 and C(x2) = 110, then C∗(x1x2) = 0110.

Definition 2.19 (Unique Decodability). A code C is uniquely decodable
if its extension C∗ is nonsingular.

Thus, any encoded string in a uniquely decodable code has only one
possible source string that could have generated it.

Definition 2.20 (Prefix Code). A code is a prefix code if no codeword is a Also called
instantaneous codeprefix of any other codeword.

Upon receiving a coded sequence, an instantaneous code permits de-
coding each symbol as soon as its corresponding codeword is com-
pletely received. Since the code structure indicates where each code-
word ends, the code effectively provides implicit punctuation separat-
ing the symbols. This allows the entire message to be decoded by sim-
ply reading the string and identifying codeword boundaries without
needing subsequent symbols. For instance, using the code from Exam-
ple 2.15, the binary string 01011111010 is decoded as 0,10,111,110,10
because the code structure naturally separates the symbols [10]. Fig-
ure 3 illustrates the relationship between different classes of codes.
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All codes

Nonsingular codes

Uniquely decodable codes

Instantaneous
codes

Figure 3: Relationship between different types of codes

Example 2.21. [Morse Code] Morse code serves as a classic example.
Historically used for telegraphy, it represents text characters using
sequences from a ternary alphabet: a short signal (dot, . ), a longer
signal (dash, - ), and a space (pause used as a delimiter). Frequent
letters like E receive short codes ( . ), while less common ones like
Q get longer codes ( –.- ). The following table summarizes the Morse
code for some letters and the SOS distress signal:

Character/Sequence Code

E .

T -

A .-

N -.

S ...

O --

SOS ... -- ...

Nonsingularity: The code is nonsingular because each letter corresponds
to a unique sequence of dots and dashes.

Prefix Property: The code does not satisfy the prefix condition. Several
codewords are prefixes of others. For example, C(E) = . is a prefix of
C(A) = .- and C(S) = ...

Unique Decodability: Unique decodability is achieved through the crit-
ical use of pauses (spaces) inserted between letters and words accord-



2.3 source and code 16

ing to specific timing rules. These pauses function as explicit delim-
iters. Without these explicit delimiters, the ambiguities arising from
the lack of the prefix property would prevent reliable decoding. This
contrasts with prefix codes (e.g., Example 2.15), which are inherently
uniquely decodable based solely on their structure, without needing
external delimiters.

2.3.2 Kraft’s Inequality

The goal is to construct efficient codes, ideally prefix codes (instanta-
neous codes), whose expected length approaches the source entropy.
A fundamental constraint arises because short lengths cannot be ar-
bitrarily assigned to all symbols while maintaining the prefix prop-
erty or even unique decodability. Kraft’s inequality precisely quanti-
fies this limitation. It establishes a necessary condition that the chosen
codeword lengths l(x) must satisfy for any uniquely decodable code to
exist. Crucially, the same inequality also serves as a sufficient condi-
tion guaranteeing that a prefix code with these exact lengths can in-
deed be constructed. The necessity part for uniquely decodable codes
will be stated and proved first.

Denote the size of the source and code alphabets with J = |X| and
K = |D|, respectively. Different proofs of the following theorem can
be found in [10, 24]; the proof presented here follows [24], although
the one proposed in [10], based on the concept of a source tree, is also
very interesting.

Theorem 2.22 (Kraft’s Inequality). The codeword lengths l(x), x ∈ X,
of any uniquely decodable code C over a K-ary alphabet must satisfy the
inequality∑

x∈X

K−l(x) ⩽ 1 (1)

Proof. Consider the n-th power of the sum in the inequality (1):(∑
x∈X

K−l(x)

)n

=
∑
x1∈X

∑
x2∈X

. . .
∑
xn∈X

K−l(x1)K−l(x2) . . . K−l(xn)

=
∑

xn∈X\

K−l(C∗(xn))

where l(C∗(xn)) = l(C(x1))+ l(C(x2))+ . . .+ l(C(xn)) is the length of
the concatenation of the codewords assigned to x1, x2, . . . , xn. Group-
ing terms by the length m of the resulting codeword extension C∗(xn),
we obtain:∑

xn∈X\

K−l(C∗(xn)) =

nlmax∑
m=1

A(m)K−m
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where A(m) denotes the number of source sequences xn ∈ Xn whose
extended codeword C∗(xn) has length m, and lmax = maxx∈X l(x) is
the maximum length of a codeword in the code C. Since the code C

is uniquely decodable, its extension C∗ is nonsingular. Consequently,
any two distinct source sequences xn and yn must map to distinct
coded sequences C∗(xn) and C∗(yn). For a fixed length m, the num-
ber of distinct coded sequences C∗(xn) having length m cannot ex-
ceed the total number of possible K-ary sequences of length m, which
is Km. Thus, A(m) ⩽ Km. This implies that each term A(m)K−m in
the sum is less than or equal to 1. Therefore, the sum is bounded by
the number of possible values for m:(∑

x∈X

K−l(x)

)n

=

nlmax∑
m=1

A(m)K−m ⩽
nlmax∑
m=1

1 = nlmax

Thus,∑
x∈X

K−l(x) ⩽ (nlmax)
1/n

Taking the limit as n → ∞, and noting that limn→∞(nlmax)
1/n =

limn→∞ exp
(

ln(nlmax)
n

)
= e0 = 1, yields∑

x∈X

K−l(x) ⩽ 1

This completes the proof.

2.4 empirical entropy

The concept of empirical entropy builds upon the foundational notion
of Shannon entropy. For a binary source emitting symbols from the
alphabet U = {0, 1} with respective probabilities p0 and p1 = 1− p0,
the Shannon entropy is defined as:

H(p0) = −p0 log2 p0 − (1− p0) log2(1− p0)

This definition can be extended to sequences generated by such sources.
Consider first a memoryless (or zero-order) source, where the prob-
ability of emitting a symbol is independent of previously emitted
symbols. For such a source generating sequences of length n, the
alphabet of possible sequences is Σn, where Σ is the alphabet of indi-
vidual symbols. If the source emits symbols from a general alphabet
Σ of size |Σ| = σ, with each symbol s ∈ Σ having a probability ps

(such that
∑

s∈Σ ps = 1), the Shannon entropy of the source is given
by:

H(P) = H(p1, . . . ,pσ) = −
∑
s∈Σ

ps logps =
∑
s∈Σ

ps log
1

ps
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For a memoryless source, the entropy of a sequence of length n is
nH(P).

Remark 2.23. If a single symbol si occurs with probability psi =

1 (implying all other symbols have probability 0), then the entropy
H(P) = 0. Conversely, if all symbols have the same probability ps = 1

σ ,
the entropy reaches its maximum value, H(P) = logσ. Consequently,
for a sequence of n symbols drawn independently from this uniform
distribution, the total entropy is n logσ.

2.4.1 Bit Sequences

In practice, the true probabilities ps governing the source are often un-
known. Often, observation is limited to a single sequence generated
by the source. Empirical entropy provides a method to estimate the in-
formation content based directly on the observed frequencies within
that sequence. This concept is first examined for binary sequences.

Consider a binary sequence B[1,n], for which compression is sought
without access to an explicit model of the source. Instead, only the
sequence B itself is available. Without a source model, it can be hy-
pothesised that B may exhibit a statistical bias (e.g., towards more
0s or more 1s). Consequently, compression can be attempted based
on this observed characteristic. Specifically, B can be modelled as the
output of a zero-order source. If m denotes the count of 1s in B, it is
postulated that the source emits 1s with probability p = m/n. This
motivates the definition of zero-order empirical entropy:

Definition 2.24 (Zero-order empirical entropy). Given a binary sequence
B[1,n] containing m occurrences of 1 and n−m occurrences of 0, the zero-
order empirical entropy of B is defined as:

H0(B) = H
(m
n

)
=

m

n
log

n

m
+

n−m

n
log

n

n−m

where logarithms are typically base 2 for information content measured in
bits.

The zero-order empirical entropy establishes a lower bound: if com-
pression of B is attempted using a fixed codeword C(1) for 1s and
C(0) for 0s, it is impossible to compress B to fewer than nH0(B) to-
tal bits. Achieving a compressed length m|C(1)| + (n −m)|C(0)| <

nH0(B) would contradict the source coding theorem derived from
Shannon entropy.
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connection with worst case entropy A connection exists
between the zero-order empirical entropy H0(B) and the worst-case
entropy Hwc (Section 2.1). Define the set Bn,m as the collection of
all binary sequences of length n containing exactly m ones. The se-
quence B belongs to this set. The number of bits required to assign a
unique identifier to each sequence within this specific set Bn,m, which
corresponds to the worst-case entropy if selection within the set is
uniform, is Hwc(Bn,m) = log |Bn,m| = log

(
n
m

)
. Using Stirling’s ap-

proximation for the binomial coefficient, it can be shown that this
quantity relates to the total empirical entropy nH0(B):

log
(
n

m

)
≈ nH0(B) −O(logn)

Thus, the total empirical entropy nH0(B) approximates the number
of bits required to uniquely identify a sequence within the set Bn,m,
offering an interpretation of empirical entropy related to the combi-
natorial complexity of sequences with a fixed composition [41].

2.4.2 Entropy of a Text

Analogously, for a text S[1,n] drawn from an alphabet Σ = {s1, . . . , sσ},
where each symbol s ∈ Σ occurs ns times in S (such that

∑
s∈Σ ns =

n), the zero-order empirical entropy is defined based on the observed
relative frequencies:

Definition 2.25 (Zero-order empirical entropy of a text). Given a text
S[1,n] over alphabet Σ, where symbol s appears ns times, the zero-order
empirical entropy of S is:

H0(S) = H
(ns1

n
, . . . ,

nsσ

n

)
=

∑
s∈Σ

ns

n
log

n

ns

Example 2.26. Consider S = "abracadabra". The length is n = 11. The
symbol counts are na = 5, nb = 2, nc = 1, nd = 1, nr = 2. The
alphabet size is σ = 5. The zero-order empirical entropy of S is:

H0(S) =
5

11
log2

11

5
+

2

11
log2

11

2
+

1

11
log2

11

1

+
1

11
log2

11

1
+

2

11
log2

11

2
≈ 2.04 bits/symbol

This suggests a theoretical lower bound for compression based on
symbol frequencies of nH0(S) ≈ 11 × 2.04 ≈ 22.44 bits for the en-
tire sequence. This is lower than the n logσ = 11 log2 5 ≈ 25.54 bits
corresponding to the uniform distribution over the alphabet.
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This zero-order definition has limitations, particularly for sources like
natural language text where symbol occurrences often exhibit depen-
dencies. For instance, in English, the character q is almost invariably
followed by u. Higher-order entropy models (Section 2.5), which ac-
count for the conditional probability of a symbol given its preceding
context, provide a more refined measure of the information content
for such sources. This principle of exploiting context underlies com-
pression techniques such as Huffman coding (Section 2.7); however,
Huffman coding itself is typically applied in a zero-order fashion un-
less specifically adapted for context.

2.5 higher order entropy

The zero-order empirical entropy H0(S), discussed in the previous
section, provides a useful baseline for compression by considering
the frequency of individual symbols. However, it operates under the
implicit assumption that symbols are generated independently, a con-
dition seldom met in practice, especially for data like natural lan-
guage text. For instance, the probability of encountering the letter
u in English text dramatically increases if the preceding letter is q.
To capture such dependencies and obtain a more accurate measure
of the information content considering local context, the concept of
higher-order empirical entropy is introduced. This approach conditions
the probability of a symbol’s occurrence on the sequence of k symbols
that immediately precede it.

Definition 2.27 (Redundancy). For an information source X generating
symbols from an alphabet Σ, the redundancy R is the difference between the
maximum possible entropy per symbol and the actual entropy H(X) of the
source:

R = log2 |Σ|−H(X)

This redundancy value, R, quantifies the degree of predictability or
statistical structure inherent in the source. A high redundancy signi-
fies that the source is far from random, exhibiting patterns (like non-
uniform symbol probabilities or inter-symbol dependencies) that can
potentially be exploited for compression. Conversely, a source with
low redundancy behaves more randomly, leaving less room for com-
pression beyond the theoretical minimum dictated by H(X).

However, evaluating redundancy directly using Definition 2.27 often
proves impractical, as determining the true source entropy H(X) for
the process generating a given string S is typically unfeasible. This
limitation necessitates alternative, empirical approaches. To address
this issue, the concept of the k-th order empirical entropy of a string S,
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denoted as Hk(S), is introduced. In statistical coding (Section 2.7), a
scenario with k = 0 will be examined, relying on symbol frequencies
within the string. With Hk(S), the objective is to extend the entropy
concept by examining the frequencies of k-grams in string S. This re-
quires analyzing subsequences of symbols with a length of k, thereby
capturing the compositional structure of S [13].

Let S be a string of length n = |S| over an alphabet Σ of size |Σ| = σ.
Let ω denote a k-gram (a sequence of k symbols from Σ), and let nω

be the number of occurrences of ω in S. Let nωσi
be the number of

times the k-gram ω is followed by the symbol σi ∈ Σ in S. 2

Definition 2.28 (k-th Order Empirical Entropy). The k-th order empir-
ical entropy of a string S is defined as:

Hk(S) =
1

n

∑
ω∈Σk

∑
σi∈Σ

nωσi
log2

(
nω

nωσi

) (1)

where terms with nωσi
= 0 contribute zero to the sum, following the con-

vention 0 log(a/0) = 0.

This definition calculates the average conditional entropy based on
the preceding k symbols. An equivalent and often more intuitive way
to express this is by averaging the zero-order empirical entropies of
the sequences formed by the symbols following each distinct k-gram
context:

Hk(S) =
∑

ω∈Σk,nω>0

nω

n
·H0(Sω) (2)

where Sω is the string formed by concatenating all symbols that im-
mediately follow an occurrence of the k-gram ω in S (its length is
|Sω| = nω). The sum is taken over all k-grams ω that actually appear
in S (i.e., nω > 0).

Example 2.29. Consider the example from 2.26, where S = "abracadabra"
(n = 11) and Σ = {a,b, c,d, r} (σ = 5). The zero-order empirical en-
tropy is H0(S) ≈ 2.04 bits/symbol. Now, let’s calculate the first-order
(k = 1) empirical entropy using Equation (2). The contexts are the
single characters. For context a (na = 5), the following symbols form
Sa = "bcdb$" (assuming $ denotes an end-of-string marker), yielding
H0(Sa) ≈ 1.922 bits/symbol (assuming $ is a unique symbol con-
tributing to the calculation). For context b (nb = 2), the sequence is
Sb = "rr", resulting in H0(Sb) = 0 bits/symbol. Similarly, for contexts
c (nc = 1), d (nd = 1), and r (nr = 2), the subsequent sequences are

2 The notation ω ∈ Σk signifies that ω is a k-gram.
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Sc = "a", Sd = "a", and Sr = "aa", respectively, all leading to zero-
order empirical entropies of 0 bits/symbol. Therefore, the first-order
empirical entropy of S is:

H1(S) =
na

n
H0(Sa) +

nb

n
H0(Sb) + · · ·+

nr

n
H0(Sr)

=
5

11
· (1.922) +

2

11
· 0+ · · ·+ 2

11
· 0 ≈ 0.874 bits/symbol

This value is significantly lower than the zero-order empirical entropy
H0(S), reflecting the predictability introduced by considering the pre-
ceding character.

The quantity nHk(S) serves as a lower bound for the minimum num-
ber of bits attainable by any encoding of S, under the condition that
the encoding of each symbol may rely only on the k symbols preced-
ing it in S. Consistently, any compressor achieving fewer than nHk(S)

bits would imply the ability to compress symbols originating from
the related k-th order Markov source to a level below its Shannon
entropy.

Remark 2.30. As k grows large (up to k = n− 1, and often sooner),
the k-th order empirical entropy Hk(S) tends towards zero, given
that most long k-grams appear only once, making their subsequent
symbol perfectly predictable within the sequence S. This renders the
model ineffective as a lower bound for practical compressors when
k is very large relative to n. Even before reaching Hk(S) = 0, achiev-
ing compression close to nHk(S) bits becomes practically challenging
for high k values. This is due to the necessity of storing or implicitly
representing the conditional probabilities (or equivalent coding infor-
mation) for all σk possible contexts, which requires significant space
overhead (≈ σk+1 logn bits in simple models). In theory, it is com-
monly assumed that S can be compressed up to nHk(S) + o(n) bits
for any k such that k+ 1 ⩽ α logσ n for some constant 0 < α < 1. Un-
der this condition, the overhead for storing the model (σk+1 logn ⩽
nα logn) becomes asymptotically negligible compared to the com-
pressed data size (o(n) bits) [41].

Definition 2.31 (Coarsely Optimal Compression Algorithm). A com-
pression algorithm is coarsely optimal if, for every fixed value of k ⩾ 0,
there exists a function fk(n) such that limn→∞ fk(n) = 0, and for all se-
quences S of length n, the compression size achieved by the algorithm is
bounded by n(Hk(S) + fk(n)) bits.

The Lempel-Ziv algorithm family, particularly LZ78, serves as a promi-
nent example of coarsely optimal compression techniques, as demon-
strated by Plotnik et al. [47]. These algorithms typically rely on dictionary-
based compression. However, as highlighted by Kosaraju and Manzini
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[32], the notion of coarse optimality does not inherently guarantee
practical effectiveness across all scenarios. The additive term n · fk(n)
might still lead to poor performance on some sequences, especially if
fk(n) converges slowly or if the sequence length n is not sufficiently
large for the asymptotic behavior to dominate.

2.5.1 Source Coding Theorem

Having established the properties of different code types in Section 2.3
and the fundamental constraint imposed by Kraft’s inequality (Theo-
rem Theorem 2.22), we now arrive at a cornerstone result in informa-
tion theory: the Source Coding Theorem. Attributed to Shannon [54],
this theorem provides the definitive answer to the question of the ulti-
mate limit of lossless data compression. It establishes that the entropy
H(X) of the source (representing the underlying probability distribu-
tion, distinct from the empirical entropy Hk(S) of a specific string)
is not just a theoretical measure of information, but the precise oper-
ational limit for the average length of any uniquely decodable code
representing that source.

The theorem consists of two crucial parts: a lower bound on the
achievable average length, and a statement about the existence of
codes that approach this bound. The theorem will be stated for a
K-ary code alphabet D, using HK(X) = H(X)/ logK to denote the the-
oretical source entropy measured in K-ary units (assuming H(X) is
calculated using base 2 logarithms unless otherwise specified).

Theorem 2.32 (Source Coding Theorem). Let X be a random variable gen-
erating symbols from an alphabet Σ with probability mass function PX(x).
Let D be a code alphabet of size K ⩾ 2.

1. (Lower Bound) The expected length L(C) of any uniquely decodable
code C : Σ→ D∗ for X satisfies

L(C) ⩾ HK(X) =
H(X)

logK
(3)

2. (Achievability) There exists a prefix code C : Σ → D∗ such that its
expected length L(C) satisfies

L(C) < HK(X) + 1 (4)

Proof. Part (i) - Lower Bound: Let C be any uniquely decodable code
with codeword lengths l(x) for x ∈ Σ. By Theorem 2.22, these lengths
must satisfy Kraft’s inequality: S =

∑
x∈Σ K−l(x) ⩽ 1. Let an auxiliary

probability distribution Q(x) over Σ be defined as Q(x) = K−l(x)/S.
Note that

∑
x∈ΣQ(x) = 1, so Q is a valid probability distribution.
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Consider the expected length L(C):

L(C) =
∑
x∈Σ

PX(x)l(x)

=
∑
x∈Σ

PX(x) logK

(
Kl(x)

)
=

∑
x∈Σ

PX(x) logK

(
S

Q(x)

)
(since K−l(x) = SQ(x))

=
∑
x∈Σ

PX(x)
(
logK S− logKQ(x)

)
= (logK S)

∑
x∈Σ

PX(x) −
∑
x∈Σ

PX(x) logKQ(x)

= logK S−
∑
x∈Σ

PX(x) logKQ(x)

Relating the last term to the relative entropy (Kullback-Leibler diver-
gence) D(PX||Q) and the entropy HK(X):

D(PX||Q) =
∑
x∈Σ

PX(x) logK

PX(x)

Q(x)

=
∑
x∈Σ

PX(x) logK PX(x) −
∑
x∈Σ

PX(x) logKQ(x)

= −HK(X) −
∑
x∈Σ

PX(x) logKQ(x)

Thus, −
∑

PX(x) logKQ(x) = D(PX||Q) + HK(X). Substituting this
back into the expression for L(C):

L(C) = logK S+D(PX||Q) +HK(X)

Since S ⩽ 1, logK S ⩽ logK 1 = 0. Also, the relative entropy is always
non-negative, D(PX||Q) ⩾ 0. Therefore,

L(C) ⩾ 0+ 0+HK(X) = HK(X)

This establishes the lower bound (3). This line of proof closely follows
[10].

Part (ii) - Achievability: It must be shown that a prefix code exists
whose expected length satisfies (4). Consider choosing codeword lengths
l(x) for each x ∈ Σ as:

l(x) = ⌈− logK PX(x)⌉

where ⌈·⌉ denotes the ceiling function. These lengths are positive in-
tegers (assuming PX(x) ⩽ 1 and PX(x) > 0).

First, verify that these lengths satisfy Kraft’s inequality. From the def-
inition of the ceiling function:

− logK PX(x) ⩽ l(x) < − logK PX(x) + 1



2.5 higher order entropy 25

Exponentiating the left inequality with base K:

K− logK PX(x) ⩾ K−l(x) =⇒ PX(x) ⩾ K−l(x)

Summing over all x ∈ Σ:∑
x∈Σ

K−l(x) ⩽
∑
x∈Σ

PX(x) = 1

Since the chosen lengths satisfy Kraft’s inequality, the sufficiency part
of Kraft’s theorem guarantees that there exists a prefix code C with
these exact lengths l(x) = ⌈− logK PX(x)⌉ [10, 24].

Now, calculate the expected length L(C) for this prefix code:

L(C) =
∑
x∈Σ

PX(x)l(x)

=
∑
x∈Σ

PX(x)⌈− logK PX(x)⌉

<
∑
x∈Σ

PX(x)
(
− logK PX(x) + 1

)
(using ⌈y⌉ < y+ 1)

=
∑
x∈Σ

−PX(x) logK PX(x) +
∑
x∈Σ

PX(x) · 1

= HK(X) + 1

Thus, it has been shown that there exists a prefix code C with L(C) <

HK(X) + 1, proving the achievability part (4).

The Source Coding Theorem is a profound result. It states that the
source entropy HK(X) is the fundamental lower limit on the aver-
age number of K-ary symbols required per source symbol for reliable
(lossless) representation using any uniquely decodable code. Further-
more, it guarantees that a prefix code (which is instantaneously de-
codable) can always be found whose average length is within 1 sym-
bol of this theoretical minimum.

The gap of 1 in the achievability part arises from the constraint that
codeword lengths must be integers, while − logK PX(x) is generally
not. This gap can be made arbitrarily small (per source symbol) by
encoding blocks of source symbols together.

If blocks Xn = (X1, . . . ,Xn) from an independent and identically dis-
tributed source are considered, the entropy per symbol is H(Xn)/n =

H(X). Applying the theorem to the block source Σn, a prefix code
can be found with expected length Ln such that HK(X

n) ⩽ Ln <

HK(X
n) + 1. Dividing by n, the average length per original source

symbol, Ln/n, satisfies:

HK(X) ⩽
Ln

n
<

HK(X
n)

n
+

1

n
= HK(X) +

1

n
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As the block length n increases, the average codeword length per
source symbol approaches the entropy HK(X). This demonstrates that
the entropy limit is asymptotically achievable. Practical codes like
Huffman coding (Section 2.7.1) provide methods to construct opti-
mal prefix codes for a given distribution, while techniques like arith-
metic coding (Section 2.7.2) effectively approximate the block coding
concept to approach the entropy bound closely even for moderate
sequence lengths.

2.6 integer coding

This section presents methods for representing a sequence of posi-
tive integers, S = {x1, x2, . . . , xn}, potentially containing repetitions,
as a compact sequence of bits. The primary objective is to minimize
the total number of bits used. A fundamental requirement for such
representations is that they must be self-delimiting [58]. This property
ensures that when the binary codes for individual integers are con-
catenated, a decoder can unambiguously determine the boundaries
between consecutive codes, allowing for the correct reconstruction of
the original sequence.

The practical importance of efficient integer coding significantly im-
pacts both storage requirements and processing speed in numerous
computing applications. A prominent example is found in search en-
gines, which maintain vast indexes mapping terms to lists of docu-
ment identifiers (IDs). These lists, often called posting lists, can enu-
merate billions of integer IDs [53]. Efficient storage is crucial. A widely
adopted technique involves sorting the document IDs within each list
and then encoding the differences (gaps) between consecutive IDs us-
ing variable-length integer codes. This approach assigns shorter bi-
nary codes to smaller, more frequent gaps [58]. The engineering con-
siderations for constructing practical data structures based on these
principles, particularly concerning random access capabilities, are ex-
plored further in Appendix A, which details a library developed as
part of this work.

Another significant application arises in the final encoding stage of
various data compression algorithms. Techniques such as LZ77, Move-to-
Front (MTF), Run-Length Encoding (RLE), and the Burrows-Wheeler
Transform (BWT) often produce intermediate outputs consisting of
sequences of integers, where smaller values typically appear more
frequently. An effective integer coding scheme is therefore necessary
to convert these intermediate integer sequences into a final, compact
bitstream. Similarly, compressing natural language text can involve
mapping words or characters to integer token IDs; the resulting se-
quence of IDs, often reflecting token frequencies, is then compressed
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using integer codes that assign shorter representations to smaller val-
ues [58].

This section explores various techniques for designing variable-length,
prefix-free binary representations for integer sequences, focusing on
methods that optimize space efficiency while ensuring correct decod-
ability.

2.6.1 Unary Code

The unary code is one of the simplest integer encoding methods.
It represents a positive integer x ⩾ 1 as a sequence of x − 1 zeros
followed by a single one, denoted as U(x). The decoding process is
straightforward: the decoder identifies the end of the code upon en-
countering the first 1, and the value x corresponds to the total number
of bits read.

This coding method requires x bits to represent x. While simple, this
length is exponentially greater than the ⌈log2 x⌉ bits needed by the
standard binary representation B(x). Consequently, unary coding is
efficient only for very small values of x and becomes rapidly imprac-
tical as x increases. According to Shannon’s source coding theorem
(Theorem 2.32), the ideal code length for a symbol x with probability
P(x) is − log2 P(x) bits. The unary code’s length of x bits corresponds
precisely to this ideal length only if the integers follow the specific
geometric probability distribution P(x) = 2−x [52, 58].

Theorem 2.33. The unary code U(x) of a positive integer x ⩾ 1 requires x
bits, and it is optimal for the geometric distribution P(x) = 2−x.

Despite its theoretical optimality for the P(x) = 2−x distribution, the
unary code can face practical performance challenges. Its implementa-
tion often involves numerous bit shifts or bit-level operations during
decoding, which can be relatively slow for large values of x.

0 0 0 0 1

Figure 4: Unary code U(5) = 00001. It uses x = 5 bits, consisting of x− 1 = 4

zeros followed by a one.

2.6.2 Elias Codes

While unary code is simple, its inefficiency for larger integers mo-
tivated the development of universal codes. These codes, introduced
by Elias [11], are designed such that the length of the codeword for
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an integer x grows proportionally to the length of its minimal bi-
nary representation, typically O(log x), rather than O(x) as in unary
code. Compared to the standard binary code B(x), which requires
⌈log2 x⌉ bits but lacks the prefix property, the Elias γ and δ codes are
only marginally longer while possessing the crucial property of being
prefix-free.

gamma (γ) code The γ code represents a positive integer x ⩾ 1

by encoding its magnitude (specifically, the length of its binary rep-
resentation) along with its value. Let l = ⌊log2 x⌋+ 1 be the number
of bits in the standard binary representation B(x). The γ code, γ(x),
is formed by concatenating the unary code of this length, U(l), with
the l− 1 least significant bits of x (effectively, B(x) without its lead-
ing 1 bit). The leading 1 is implicitly encoded by the terminating 1 of
U(l).

The decoding process involves reading the initial unary sequence
U(l) to determine the length l. Then, the subsequent l − 1 bits are
read. Prepending a 1 to these l− 1 bits reconstructs the integer x. The
total length of γ(x) is:

|U(l)|+ (l− 1) = l+ (l− 1) = 2l− 1 = 2
(
⌊log2 x⌋+ 1

)
− 1

bits. This code structure is known to be optimal for sources where
integer probabilities decay approximately as P(x) ∝ 1/x2 [58].

Theorem 2.34. The γ code of a positive integer x ⩾ 1 takes 2(⌊log2 x⌋+
1) − 1 bits. It is optimal for distributions where P(x) ∝ 1/x2. Its length is
within a factor of two (minus one bit) of the length of the standard binary
code B(x).

0 0 1 1 0

Figure 5: Elias γ code for x = 6. Binary B(6) = 110, length l = 3. The code
consists of U(3) = 001 followed by the l− 1 = 2 trailing bits (10).
Result: γ(6) = 00110 (5 bits).

The primary inefficiency in the γ code stems from the unary encoding
of the length l, which grows linearly with log x. The δ code addresses
this aspect.

delta (δ) code The δ code improves upon γ by encoding the
length parameter l = ⌊log2 x⌋+ 1 more efficiently, using the γ code
itself. The δ code, δ(x), is constructed by first computing γ(l) and then
appending the same l− 1 least significant bits of x (i.e., B(x) without
its leading 1) used in γ(x).
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Decoding δ(x) requires first decoding the initial γ(l) segment to re-
trieve the length l. Then, the next l− 1 bits are read. Prepending a 1

to these bits reconstructs x. The total number of bits is

|γ(l)|+ (l− 1) = (2⌊log2 l⌋+ 1) + (l− 1) = 2⌊log2 l⌋+ l.

Asymptotically, this length is approximately log2 x + 2 log2 log2 x +

O(1) bits [58]. This is only marginally longer (by a factor of 1+ o(1))
than the raw binary representation B(x). The δ code achieves optimal-
ity for distributions where P(x) ∝ 1/(x(log2 x)

2).

Theorem 2.35. The δ code of a positive integer x ⩾ 1 takes 2⌊log2(⌊log2 x⌋+
1)⌋+ ⌊log2 x⌋+ 1 bits, approximately log2 x+ 2 log2 log2 x. It is optimal
for distributions P(x) ∝ 1/(x(log2 x)

2) and is within a factor 1+ o(1) of
the length of B(x).

0 1 1 1 0

Figure 6: Elias δ code for x = 6. B(6) = 110, length l = 3. First, encode l = 3

using γ: γ(3) = 011. Then, append the l− 1 = 2 trailing bits (10).
Result: δ(6) = 01110 (5 bits).

Similar to the unary code, decoding Elias codes often involves bit-
level operations, which might impact performance for very large in-
tegers compared to codes that operate on byte or word boundaries.

2.6.3 Rice Code

While Elias codes offer universality, they might be suboptimal if the
distribution of integers is known or expected to cluster around values
other than powers of two. Rice codes [49], which represent a specific
instance of the more general Golomb codes [19], provide a parametric
alternative better suited to certain distributions. These codes depend
on a parameter k > 0, typically chosen based on the statistics of the
integers being encoded.

Given an integer x ⩾ 1 and the parameter k, the Rice code Rk(x) is
computed by first determining the quotient q and the remainder r:

q = ⌊(x− 1)/2k⌋ r = (x− 1) (mod 2k)

The codeword Rk(x) is then constructed by concatenating the unary
code of the quotient plus one, U(q+ 1), followed by the remainder r

represented using exactly k bits. This k-bit binary representation of r,
denoted Bk(r), might require padding with leading zeros if r < 2k−1

(assuming k > 0). This structure is particularly efficient when integers
frequently yield small values for the quotient q, which occurs when x
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is often slightly larger than a multiple of 2k. An example illustrating
this construction for x = 13 and k = 3 is shown in Figure 7.

The total number of bits required to represent x using Rk(x) is given
by |U(q+ 1)|+ k = (q+ 1) + k. Rice codes are known to be optimal
for geometric distributions, where the probability of integer x is given
by P(x) = p(1− p)x−1 for some parameter p. Optimality is achieved
when the parameter k is chosen such that 2k closely approximates the
mean or median of the distribution [58]. More precisely, the optimal
k satisfies the condition

2k ≈ −
log 2

log(1− p)

The fixed length (k bits) of the remainder part Bk(r) can facilitate
faster decoding procedures in certain hardware or software imple-
mentations compared to the variable-length components found in
Elias codes.

0 1 1 0 0

Figure 7: Rice code for x = 13 with parameter k = 3. Calculate q = ⌊(13−
1)/23⌋ = 1 and r = (13− 1) (mod 8) = 4. The code is U(q+ 1) =

U(2) = 01 followed by r = 4 in k = 3 bits, B3(4) = 100. Result:
R3(13) = 01100 (5 bits).

2.6.4 Elias-Fano Representation

The Elias-Fano representation, based on the work developed inde-
pendently by Elias [11] and Fano [12], provides an elegant method
for compressing monotonically increasing sequences of integers. Its
modern utility stems from its ability to achieve near-optimal space
usage, often only slightly exceeding the information-theoretic mini-
mum, while critically enabling efficient query operations directly on
the compressed data. The capability for efficient queries relies on ad-
vancements in succinct data structures, particularly for rank and se-
lect operations [51]. This combination has proven highly effective in
applications such as inverted index compression for search engines
[44, 57].

representation structure Consider a strictly increasing se-
quence of n non-negative integers S = {s0, s1, . . . , sn−1}, where 0 ⩽
s0 < s1 < . . . < sn−1 < u. The integers belong to a universe of size u.
It is assumed u > n. Each integer si requires b = ⌈log2 u⌉ bits in its
standard binary form.

The core idea of Elias-Fano is to partition these b bits into two seg-
ments based on a parameter l. The parameter l is chosen as l =
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⌊log2(u/n)⌋ (setting l = 0 if u ⩽ n), a choice known to minimize
the total space required [11]. This splits each si into: the lower bits,
L(si), comprising the l least significant bits; and the upper bits, H(si),
comprising the remaining h = b− l most significant bits.

The representation consists of two primary components. First, a Lower
Bits Array, denoted L, is created by concatenating the l-bit values
L(s0)L(s1) . . . L(sn−1). This array occupies exactly n · l bits.

Second, an Upper Bits Bitvector, denoted H, encodes the distribution
of the upper bit values. For each possible h-bit value j (ranging from
0 to 2h − 1), let cj be the count of elements si in S such that H(si) = j.
The bitvector H is formed by concatenating the sequences 1cj0 for
j = 0, 1, . . . , 2h − 1. In essence, it uses a unary code (1cj) to indicate
how many elements share the upper bits value j, followed by a zero
delimiter. This structure yields a bitvector H of length exactly n+ 2h

bits. It contains n ones (one for each element si) and 2h zeros (one
delimiter per possible upper bits value). Note that 2h ≈ n, so the
length of H is typically around 2n.

Theorem 2.36 (Elias-Fano Space Complexity [51, 57]). The Elias-Fano
encoding of a strictly increasing sequence S of n integers in the range [0,u)
requires

n⌊log2(u/n)⌋+n+ 2h

bits, where

h = ⌈log2 u⌉− ⌊log2(u/n)⌋

This space is upper bounded by n log2(u/n) + 2n bits, which is provably
less than 2 bits per integer above the information-theoretic lower bound. The
representation can be constructed in O(n) time.

An example of this encoding is provided in Figure 8 for the sequence
S = {1, 4, 7, 18, 24, 26, 30, 31}. Here n = 8, u = 32, leading to l = 2

lower bits and h = 3 upper bits. The array L concatenates the 2-bit
lower parts (L(1) = 01,L(4) = 00, . . .). The bitvector H encodes the
counts of each upper bit value (H = 0 appears once, H = 1 twice,
H = 2 zero times, etc.) using unary codes (1cj) separated by zeros.

query operations The practical power of the Elias-Fano repre-
sentation arises when the upper bits bitvector H is augmented with
auxiliary data structures supporting constant-time rank (rank0, rank1)
and select (select0, select1) queries, as detailed in Section 3.1. These
structures typically add a o(n) bits overhead. With this machinery,
key operations can be performed efficiently [51, 57].
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i si H(si) L(si)

0 1 0 (000) 1 (01)

1 4 1 (001) 0 (00)

2 7 1 (001) 3 (11)

3 18 4 (100) 2 (10)

4 24 6 (110) 0 (00)

5 26 6 (110) 2 (10)

6 30 7 (111) 2 (10)

7 31 7 (111) 3 (11)

L = 0100111000101011 (n · l = 8× 2 = 16 bits)
H = 1011000100110110 (n+ 2h = 8+ 23 = 16 bits)

Figure 8: Elias-Fano encoding example for the sequence S =

{1, 4, 7, 18, 24, 26, 30, 31} with parameters n = 8, u = 32, l = 2,
h = 3. The table shows the decomposition of each si into its
upper H(si) and lower L(si) bits. Below the table are the resulting
concatenated lower bits array L and the upper bits bitvector H.

Access(i) retrieves the i-th element si (with 0 ⩽ i < n). First, the lower
l bits, L(si), are read directly from array L starting at bit position
i · l. Second, the position p corresponding to the (i+ 1)-th 1 in H is
found using p = select1(H, i + 1). Third, the value of the upper h

bits, H(si), is determined by counting the number of zeros preceding
position p; this count is given by H(si) = p− (i+ 1) or equivalently
H(si) = rank0(H,p). Finally, the integer is reconstructed by combin-
ing the parts: si = (H(si) ≪ l)∨ L(si). Since each step operates in
constant time, Access(i) has an overall O(1) time complexity.

Successor(x) (or NextGEQ(x)) finds the smallest element si ∈ S such
that si ⩾ x, given x ∈ [0,u). First, the query value x is decom-
posed into its upper bits H(x) and lower bits L(x). Using select0
queries on H, the range of indices [p1,p2) in S corresponding to el-
ements whose upper bits are exactly H(x) is identified. Specifically,
p1 (the index of the first element with upper bits H(x)) is derived
from the position of the H(x)-th zero, and p2 (the index of the first
element with upper bits H(x) + 1) is derived from the position of the
(H(x) + 1)-th zero. A search is then conducted within the segment
L[p1 · l . . . p2 · l− 1] of the lower bits array to find the smallest index
k ∈ [p1,p2) for which L(sk) ⩾ L(x). If such a k is found, the suc-
cessor is sk = (H(x) ≪ l)∨ L(sk). If no such k exists in the range,
the successor must be the first element with upper bits greater than
H(x), which is sp2

(assuming p2 < n), retrievable via Access(p2). The
dominant cost is the search within the lower bits, potentially involv-
ing O(u/n) candidates. Using binary search, this takes O(log(u/n))
time. The select operations contribute O(1) time, leading to a total
complexity of O(1+ log(u/n)) for Successor(x) Predecessor(x) finds the
largest element si ∈ S such that si ⩽ x. It uses a symmetric ap-
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proach. The same index range [p1,p2) based on H(x) is located. A
search is performed on the corresponding lower bits in L to find the
largest index k ∈ [p1,p2) such that L(sk) ⩽ L(x). If found, the pre-
decessor is sk = (H(x) ≪ l)∨ L(sk). If no element within the range
[p1,p2) satisfies sk ⩽ x, the predecessor must be the last element with
upper bits strictly less than H(x), namely sp1−1 (assuming p1 > 0),
which is retrieved using Access(p1 − 1). The time complexity is also
O(1+ log(u/n)).

2.7 statistical coding

This section explores a technique called statistical coding: a method for
compressing a sequence of symbols (texts) drawn from a finite alpha-
bet Σ. The idea is to divide the process in two key stages: modeling
and coding. During the modeling phase, statistical characteristics of
the input sequence are analyzed to construct a model, typically es-
timating the probability P(σ) for each symbol σ ∈ Σ. In the coding
phase, this model is utilized to generate codewords for the symbols,
which are then employed to compress the input sequence. Two popu-
lar statistical coding methods will be focused upon: Huffman coding
and Arithmetic coding.

2.7.1 Huffman Coding

Compared to the methods seen in Section 2.6, Huffman Codes, intro-
duced by David A. Huffman in his landmark 1952 paper [27], offer
broader applicability. They construct optimal prefix-free codes for a
given set of symbol probabilities, without requiring specific assump-
tions about the underlying distribution itself (beyond non-zero prob-
abilities). This versatility makes them suitable for diverse data types,
including text where symbol frequencies often lack a simple mathe-
matical pattern.

For instance, in English text, the letter e is far more frequent than
z, and simple integer codes based on alphabetical order would be
highly inefficient. Huffman coding directly addresses this by assign-
ing shorter codewords to more frequent symbols.

construction of huffman codes The construction algorithm
is greedy and builds a binary tree bottom-up. Each symbol σ ∈ Σ ini-
tially forms a leaf node, typically weighted by its probability P(σ)

or its frequency count nσ. The algorithm repeatedly selects the two
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nodes (initially leaves, later internal nodes representing merged sub-
trees) with the smallest current weights, merges them into a new in-
ternal node whose weight is the sum of the two merged weights, and
places the two selected nodes as its children. This process continues
until only one node, the root, remains.

The prefix-free code for each symbol σ is then determined by the path
from the root to the leaf corresponding to σ. Conventionally, a 0 is as-
signed to traversing a left branch and a 1 to a right branch (or vice
versa). The concatenation of these bits along the path forms the Huff-
man code for the symbol. More formal descriptions and variations
can be found in [10, 13, 24, 52].
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Figure 9: Huffman tree for the example probabilities (P(a) = 0.25,P(b) =

0.25,P(c) = 0.2,P(d) = 0.15,P(e) = 0.15). The resulting codes (0 for
left, 1 for right) are: C(a) = 01, C(b) = 10, C(c) = 00, C(d) = 110,
C(e) = 111.

Example 2.37. [Huffman Coding Construction] Let Σ = {a,b, c,d, e}
with probabilities P(a) = 0.25, P(b) = 0.25, P(c) = 0.2, P(d) = 0.15,
P(e) = 0.15.

1. Initial nodes: (a: 0.25), (b: 0.25), (c: 0.2), (d: 0.15), (e: 0.15).

2. Merge smallest: d and e. Create node (de: 0.30). Current nodes:
(a: 0.25), (b: 0.25), (c: 0.2), (de: 0.30).

3. Merge smallest: c and a. Create node (ca: 0.45). Current nodes:
(b: 0.25), (de: 0.30), (ca: 0.45). (Note: Choosing c and a over c and
b is arbitrary here; another valid tree exists).

4. Merge smallest: b and de. Create node (bde: 0.55). Current nodes:
(ca: 0.45), (bde: 0.55).

5. Merge last two: ca and bde. Create root (root: 1.00).

The resulting tree and codes (assigning 0 to left, 1 to right) are shown
in Figure 9.

Let LC =
∑

σ∈Σ P(σ) · l(σ) be the average codeword length for a
prefix-free code C, where l(σ) is the length of the codeword assigned
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to symbol σ. The Huffman coding algorithm produces a code CH that
is optimal among all possible prefix-free codes for the given probabil-
ity distribution.

Theorem 2.38 (Optimality of Huffman Codes). Let CH be a Huffman
code generated for a given probability distribution P over alphabet Σ. For
any other prefix-free code C ′ for the same distribution, the average codeword
length satisfies LCH

⩽ LC ′ .

This optimality signifies that no other uniquely decodable code as-
signing fixed codewords to symbols can achieve a shorter average
length. The proof typically relies on induction or an exchange ar-
gument, demonstrating that any deviation from the greedy merging
strategy cannot improve the average length [10, 13, 24, 52].

The length of individual Huffman codewords can vary. In the worst
case, the longest codeword might approach |Σ|− 1 bits (in a highly
skewed distribution). However, a tighter bound related to the mini-
mum probability pmin exists: the maximum length is O(log(1/pmin))

[41]. If probabilities derive from empirical frequencies in a text of
length n, then pmin ⩾ 1/n, bounding the maximum codeword length
by O(logn). The encoding process itself, once the tree (or equiva-
lent structure) is built, is typically linear in the length of the input
sequence S, i.e., O(|S|).

Decoding uses the Huffman Tree (or an equivalent lookup structure).
Bits are read sequentially from the compressed stream, traversing the
tree from the root according to the bit values (e.g., 0 for left, 1 for right)
until a leaf node is reached. The symbol associated with that leaf is
output, and the process restarts from the root for the next symbol. The
total decoding time is proportional to the total number of bits in the
compressed sequence. Since individual codes have length O(logn) in
the empirical case, decoding a single symbol takes at most O(logn)

bit reads and tree traversals.

While optimal among prefix codes, Huffman coding still assigns an
integer number of bits to each symbol. This leads to a slight ineffi-
ciency compared to the theoretical entropy limit, as quantified by the
following theorem.

Theorem 2.39. Let H =
∑

σ∈Σ P(σ) log2(1/P(σ)) be the entropy of a
source emitting symbols from Σ according to distribution P. The average
length LH of the corresponding Huffman code is bounded by

H ⩽ LH < H+ 1.

Proof. The lower bound H ⩽ LH follows from Shannon’s source cod-
ing theorem (Theorem 2.32), which states that H is the minimum
possible average length for any uniquely decodable code.
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For the upper bound, assign to each symbol σ the ideal codeword
length l ′σ = − log2 P(σ). Since codeword lengths must be integers, set
lσ = ⌈− log2 P(σ)⌉. Then

lσ < − log2 P(σ) + 1.

These lσ satisfy Kraft’s inequality:∑
σ∈Σ

2−lσ ⩽
∑
σ∈Σ

2−(− log2 P(σ)) =
∑
σ∈Σ

P(σ) = 1,

so a prefix code C ′ with these lengths exists. Its average length is

LC ′ =
∑
σ∈Σ

P(σ)lσ <
∑
σ∈Σ

P(σ)(− log2 P(σ) + 1) = H+ 1.

Since Huffman coding is optimal (Theorem 2.38), LH ⩽ LC ′ < H+ 1.
Thus,

H ⩽ LH < H+ 1.

This theorem highlights that the average Huffman code length is al-
ways within one bit of the source entropy. The gap (LH −H) repre-
sents the inefficiency due to the constraint of using integer bit lengths
for each symbol’s codeword. This gap is significant only when some
symbol probabilities are very high (close to 1).

2.7.2 Arithmetic Coding

Introduced conceptually by Peter Elias in the 1960s and later devel-
oped into practical algorithms by Rissanen [50] and Pasco [45] in the
1970s, Arithmetic Coding offers a more powerful approach to statis-
tical compression than Huffman coding. Its key advantage lies in its
ability to approach the theoretical entropy limit more closely, often
achieving better compression ratios, especially when dealing with
skewed probability distributions or when encoding sequences rather
than individual symbols.

Unlike Huffman coding, which assigns a distinct, fixed-length (in-
teger number of bits) prefix-free code to each symbol, Arithmetic
coding represents an entire sequence of symbols as a single fraction
within the unit interval [0, 1). The length of the binary representation
of this fraction effectively corresponds to the information content (en-
tropy) of the entire sequence, allowing for an average representation
that can use a fractional number of bits per symbol. This overcomes
the inherent inefficiency of Huffman coding, which is bounded by
H ⩽ LH < H + 1. Arithmetic coding aims to achieve a compressed
size very close to nH bits for a sequence of length n.
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2.7.2.1 Encoding and Decoding

Let S = S[1]S[2] . . . S[n] be the input sequence of symbols drawn from
alphabet Σ, and let P(σ) be the probability of symbol σ according to
the chosen statistical model.

The core idea of the encoding process (Algorithm 1) is to progres-
sively narrow down a sub-interval of [0, 1). Initially, the interval is
[l0,h0) = [0, 1). For each symbol S[i] in the sequence, the current
interval [li−1,hi−1) of size si−1 = hi−1 − li−1 is partitioned into
smaller sub-intervals, one for each symbol σ ∈ Σ. The size of the
sub-interval for σ is proportional to its probability, si−1 · P(σ). The al-
gorithm then selects the sub-interval corresponding to the actual sym-
bol S[i] and makes it the new current interval [li,hi) for the next step.
The cumulative probability function C(σ) =

∑
σ ′<σ P(σ ′) (summing

probabilities of symbols lexicographically smaller than σ) is used to
efficiently calculate the start (li) of the correct sub-interval. After pro-
cessing all n symbols, the final interval is [ln,hn) = [ln, ln + sn),
where sn =

∏n
i=1 P(S[i]).

Algorithm 1 Arithmetic Coding

Require: Sequence S = S[1..n], Probabilities P(σ) for σ ∈ Σ

Ensure: A sub-interval [ln, ln + sn) uniquely identifying S.
1: Compute cumulative probabilities C(σ) =

∑
σ ′<σ P(σ ′)

2: l← 0

3: s← 1 ▷ Initial interval [0, 1), size 1

4: for i = 1 to n do
5: lnew ← l+ s ·C(S[i]) ▷ Calculate start of sub-interval
6: snew ← s · P(S[i]) ▷ Calculate size of sub-interval
7: l← lnew

8: s← snew

9: end for
10: return [l, l+ s) ▷ Final interval represents the sequence

The final output of the encoder is not the interval itself, but rather
a binary fraction x that falls within this final interval [ln, ln + sn)

and can be represented with the fewest possible bits. Practical im-
plementations use techniques to incrementally output bits as soon as
they are determined (i.e., when the interval lies entirely within [0, 0.5)
or [0.5, 1)) and rescale the interval to maintain precision using fixed-
point arithmetic [13, 40].

The decoding process (Algorithm 2) essentially reverses the encoding.
The decoder needs the compressed bitstream (representing the frac-
tion x), the same probability model P(σ), and the original sequence
length n. It starts with the interval [0, 1). In each step i, it determines
which symbol σ’s sub-interval [l+ s ·C(σ), l+ s ·C(σ) + s · P(σ)) con-
tains the encoded fraction x. That symbol σ must be S[i]. The decoder
outputs σ and updates its current interval to be this sub-interval, just
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as the encoder did. This is repeated n times to reconstruct the original
sequence S.

Algorithm 2 Arithmetic Decoding

Require: Encoded fraction x, Probabilities P(σ), Sequence length n.
Ensure: Original sequence S[1..n].

1: Compute cumulative probabilities C(σ) =
∑

σ ′<σ P(σ ′)
2: l← 0

3: s← 1

4: S← empty sequence
5: for i = 1 to n do
6: Find symbol σ s.t l+ s ·C(σ) ⩽ x < l+ s · (C(σ) + P(σ))

7: Append σ to S

8: lnew ← l+ s ·C(σ)
9: snew ← s · P(σ)

10: l← lnew

11: s← snew

12: end for
13: return S

2.7.2.2 Efficiency of Arithmetic Coding

The final interval size sn =
∏n

i=1 P(S[i]) is crucial. If empirical prob-
abilities P(σ) = nσ/n are used, where nσ is the frequency of σ in
S, then sn =

∏
σ∈Σ(nσ/n)

nσ . As noted before, the number of bits
required to uniquely specify a number within an interval of size sn
is approximately − log2 sn.

Calculating − log2 sn with empirical probabilities gives:

− log2

(∏
σ∈Σ

(nσ

n

)nσ

)
= −

∑
σ∈Σ

nσ log2

(nσ

n

)
= n

∑
σ∈Σ

nσ

n
log2

(
n

nσ

)
= nH

where H is the empirical (0-th order) entropy of the sequence S. This
demonstrates that the ideal number of bits needed by arithmetic cod-
ing matches the entropy of the sequence exactly.

The connection between the final interval size sn and the actual num-
ber of output bits deserves clarification. The encoder needs to trans-
mit a binary representation of some number x that lies within the
final interval [ln, ln + sn). To ensure the decoder can uniquely iden-
tify this interval (and thus the sequence), the chosen number x must
be distinguishable from any number lying in adjacent potential inter-
vals. This requires a certain precision. The minimum number of bits
k needed to represent such an x as a dyadic fraction (i.e., a number of
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the form N/2k) must satisfy 2−k ⩽ sn. This condition ensures that the
precision 2−k is fine enough to pinpoint a unique value within the tar-
get interval of size sn. Taking logarithms, this implies k ⩾ − log2 sn.
To guarantee that such a fraction actually exists within the interval,
and to handle the process of incrementally outputting bits, practical
arithmetic coding requires slightly more bits than the theoretical min-
imum − log2 sn. A careful analysis shows that at most 2 extra bits are
needed beyond the ideal nH.

Theorem 2.40. The number of bits emitted by arithmetic coding for a se-
quence S of n symbols, using probabilities P(σ) derived from the empirical
frequencies within S, is at most 2+ nH, where H is the empirical entropy
of the sequence S.

Proof. Formal proofs can be found in standard texts on information
theory and data compression [10, 13, 24, 52]. The core idea, as out-
lined above, relates the required number of bits k to the final interval
size sn = 2−nH via k ≈ − log2 sn = nH. The additive constant ac-
counts for representing a specific point within the interval.

Remark 2.41. Practical arithmetic coders do not use floating-point
numbers due to precision issues. They employ integer arithmetic,
maintaining the interval bounds [L,H) as large integers within a fixed
range (e.g., 16 or 32 bits). As the conceptual interval shrinks, common
leading bits of L and H are output, and the integer interval is rescaled
(e.g., doubled) to occupy the full range again, effectively shifting the
conceptual interval. Special handling ("underflow") is needed when
the interval becomes very small but straddles the midpoint (e.g., 0.5),
preventing immediate output of the next bit. These implementation
details ensure correctness and efficiency with fixed-precision arith-
metic [40].
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R A N K A N D S E L E C T

Building upon the concepts of data compression and information the-
ory from the preceding chapters, we now address the construction of
succinct data structures. As motivated in Section 1.1, the objective is to
represent discrete structures using space close to their information-
theoretic minimum, while supporting efficient query operations di-
rectly on their compressed representation.

This chapter focuses on the fundamental rank and select operations.
Given a sequence, rank counts occurrences of specified elements up
to a given position, whereas select finds the position of the i-th oc-
currence of a specified element. The efficient implementation of these
queries is critical for the functionality of many succinct data struc-
tures. We will investigate methods to support rank and select effi-
ciently, typically achieving constant query time, through the use of
auxiliary structures whose space requirement is sublinear relative to
the input size.

Our examination proceeds in three stages. First, we consider the foun-
dational case of bitvectors (binary sequences). We will analyze tech-
niques, including hierarchical decomposition methods, for construct-
ing auxiliary structures that use o(n) bits of space, where n is the
bitvector length, enabling constant-time rank and select queries on the
original bitvector. Second, we generalize these concepts to sequences
defined over larger, finite alphabets. We will study Wavelet Trees, a
structure that reduces rank and select operations on general strings
to corresponding operations performed on underlying bitvectors. Fi-
nally, the chapter addresses the more recent case of degenerate strings,
which are sequences where each position may represent a subset of
characters from the alphabet. We will review approaches that extend
rank and select capabilities to this setting, by adapting the principles
established for standard strings and bitvectors.

3.1 bitvectors

We begin our study with the most fundamental sequence type, the
bitvector B[1..n], a sequence of n bits from {0, 1}. Our primary ob-
jective is to support two essential query operations on B efficiently:
rankb(B, i), which counts the occurrences of bit b in the prefix B[1..i],
and selectb(B, i), which finds the index of the i-th occurrence of bit

40
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b in B. While these operations can be answered by scanning B in
O(n) time, we seek constant-time solutions, O(1), by augmenting B

with succinct auxiliary data structures. These structures should oc-
cupy o(n) bits, leading to a total space usage of n+ o(n) bits when
storing B explicitly. We now formally define these operations.

Definition 3.1 (Rank). Given a bitvector B[1..n], the rank of an index i

(1 ⩽ i ⩽ n) relative to a bit c ∈ {0, 1} is the number of occurrences of c in
the prefix B[1..i]. We denote it as rankc(i). Specifically, for c = 1:

rank1(i) =

i∑
j=1

B[j]

The rank for c = 0 can be derived as rank0(i) = i− rank1(i).

Definition 3.2 (Select). Given a bitvector B[1..n], the select of the i-th oc-
currence of a bit c ∈ {0, 1} is the index j such that B[j] = c and rankc(j) =

i. We denote it as selectc(i). If the i-th occurrence of c does not exist,
selectc(i) is undefined (or returns a special value). Unlike rank, select0(i)
cannot generally be computed directly from select1(i) in constant time.

011 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 10: Example of a bitvector B[1..20]. The prefix B[1..15] (shaded red)
contains 9 ones, so rank1(15) = 9. The 7th 1 (circled blue) occurs
at index 12, so select1(7) = 12.

Example 3.3. Let B be the bitvector of length n = 20 shown in Figure
10:

B = 10110100110101110010

• rank1(15): We count the number of 1s in the prefix B[1..15].

B[1..15] = 101101001101011︸ ︷︷ ︸
15 bits

By scanning, there are 9 ones. Therefore, rank1(15) = 9.

• select1(7): We find the index of the 7th occurrence of 1 in B.
Scanning B: the 1st 1 is at index 1, 2nd at 3, 3rd at 4, 4th at
6, 5th at 9, 6th at 10, and the 7th 1 is at index 12. Therefore,
select1(7) = 12.



3.1 bitvectors 42

Bitvectors supporting efficient rank and select operations are indeed
foundational components for many compressed and succinct data
structures. Attaining high performance for these operations is there-
fore a central concern. The following sections will describe methods
to construct the o(n)-bit auxiliary structures that achieve constant
query times. Furthermore, it is often the case that bitvectors encoun-
tered in applications exhibit skewed distributions of 0s and 1s (i.e.,
they are sparse). While the n+ o(n) structures operate on the explicit
bitvector, separate lines of research have explored compressing the
bitvector B itself by leveraging these statistical properties, thereby re-
ducing the initial n-bit storage requirement.

Remark 3.4. Applying standard symbol-wise coding techniques from
Chapter 2 (such as Huffman or Arithmetic coding) directly to a bitvec-
tor B typically yields a compressed size related to its zero-order en-
tropy, approximately nH0(B) bits. While potentially reducing space,
especially for biased bitvectors, this form of compression generally
obstructs efficient random access and the direct computation of rank
and select queries without significant decompression overhead. The
specialized structures detailed in this chapter are expressly designed
to provide both space efficiency and fast query capabilities.

3.1.1 Rank

A fundamental approach to support rank queries in constant time
using sublinear additional space was introduced by Jacobson [29].
The technique relies on a hierarchical decomposition of the bitvector
B[1..n] and precomputation of ranks at different granularities. The
auxiliary structures occupy o(n) bits in total.

The structure typically employs two levels of blocking on top of the
original bitvector B. First, B is conceptually divided into superblocks
of size Z. Second, each superblock is further divided into blocks of
size z. Common parameter choices yielding o(n) overhead are Z =

Θ(log2 n) and z = Θ(logn), for example Z = ⌊log2 n⌋ and z =

⌊(1/2) logn⌋. We assume for simplicity that z divides Z and Z divides
n.

Two auxiliary arrays store precomputed rank information. The first ar-
ray, RS, stores the absolute rank at the beginning of each superblock:

RS[k] = rank1(B, k ·Z) k = 0, . . . ,n/Z− 1

The second array, RB, stores the rank within a superblock at the begin-
ning of each block, relative to the start of the superblock. Specifically,
for the l-th block overall, which belongs to superblock k = ⌊l · z/Z⌋

RB[l] = rank1(B, l · z) − rank1(B, k ·Z)
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Finally, a lookup table, often denoted T , is used to determine the rank
within a small block of size z. For every possible z-bit pattern p, and
every position j ∈ [1, z], T [p][j] stores the value rank1(p, j), i.e., the
number of set bits in the first j positions of the pattern p.

Figure 11 shows a visual representation of the hierarchical data struc-
ture.

... 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 ...

0 2 3 5

0 0 0 0 01 1 1 1

Figure 11: The hierarchical rank data structure. The first level is composed
of superblocks of size Z (storing absolute ranks ri), the second
level of blocks of size z (storing relative ranks ri,j), and the third
level uses a lookup table (represented by the bottom row).

The lookup table T allows determining the number of set bits within
any prefix of a z-bit block in constant time. Table 1 shows an example
for z = 3. For a block p, the entry in column j (corresponding to
rank1(p, j)) gives the precomputed result.

block ri,0 ri,1 ri,2

000 0 0 0

001 0 0 1

010 0 1 1

011 0 1 2

100 1 1 1

101 1 1 2

110 1 2 2

111 1 2 3

Table 1: Example of a lookup table T for intra-block rank computation with
z = 3. Each row corresponds to a possible z-bit pattern p. The cell
for pattern p and index j stores rank1(p, j).

We can state the following theorem regarding the space and time
complexity [28].
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Theorem 3.5. Given a bitvector B[1..n], there exists an auxiliary data struc-
ture using o(n) bits that allows computing rankb(B, i) for any i ∈ [1,n]
and b ∈ {0, 1} in O(1) time. The original bitvector B is accessed only in read
mode. The total space required is n+ o(n) bits.

Proof. We construct the auxiliary data structure using a standard two-
level hierarchical decomposition of the bitvector B. We define a su-
perblock size Z = ⌊log2 n⌋ and a block size z = ⌊(1/2) logn⌋. For ana-
lytical simplicity, assume n is a multiple of Z, and Z is a multiple of
z.

The structure comprises three main components designed to store
precomputed rank information at different scales.

First, the Superblock Rank Directory (RS) is an array storing the absolute
rank at the start of each superblock. Specifically, for k ∈ [0,n/Z− 1],
RS[k] = rank1(B, k · Z). Since each rank value is at most n, storing
these requires ⌈logn⌉ bits per entry. The total space for RS is:

Space(RS) =
n

Z
⌈logn⌉ = n

⌊log2 n⌋
⌈logn⌉

= O

(
n logn

log2 n

)
= O(n/ logn) bits.

Second, the Block Rank Directory (RB) stores ranks relative to the start
of the containing superblock. For each block index l ∈ [0,n/z − 1],
let k = ⌊l · z/Z⌋ be its superblock index. RB[l] stores the relative
rank rank1(B, l · z) − rank1(B, k ·Z). This value is at most Z, requiring
⌈logZ⌉ bits per entry. The total space for RB is:

Space(RB) =
n

z
⌈logZ =

n

⌊(1/2) logn⌋
⌈log(⌊log2 n⌋)⌉

= O

(
n

logn
log(log2 n)

)
= O

(
n log logn

logn

)
bits.

We verify that the space complexity for both directories RS and RB

is sublinear, i.e., o(n). For RS, we have O(n/ logn). As n → ∞,
(n/ logn)/n = 1/ logn → 0. For RB, we have O(n log logn/ logn).
As n → ∞, (n log logn/ logn)/n = log logn/ logn → 0. Thus, both
Space(RS) and Space(RB) are o(n).

Third, the Intra-Block Rank Mechanism (T ) is responsible for determin-
ing the rank within any z-bit block in constant time. A direct precom-
putation approach involves storing, for each of the 2z possible z-bit
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patterns p and each position j ∈ [1, z], the value rank1(p, j). The space
requirement for such a naive table would be:

Space(Naive T) = O(2z · z · log z).

Substituting z = ⌊(1/2) logn⌋, this becomes

O(2(1/2) logn logn log logn) = O(
√
n logn log logn)

which is not sublinear (o(n)). The crucial insight, originally provided
by Jacobson [28], is that this intra-block rank functionality can indeed
be implemented using auxiliary structures occupying only o(n) bits
while still supporting O(1) query time. This often involves techniques
like further table compression or specialized indexing strategies not
detailed here, but whose existence and performance guarantees we
rely upon.

The total auxiliary space is the sum of the space complexities for RS,
RB, and the efficient implementation of T . This sum is O(n/ logn) +

O(n log logn/ logn) + o(n), which simplifies to o(n). Therefore, the
total space including the original bitvector is n+ o(n) bits.

It is worth noting a crucial optimization for practical implementa-
tions, especially when the block size z is chosen such that it fits within
a machine word (e.g., z ⩽ 64 on standard 64-bit architectures). In this
scenario, the theoretical o(n)-bit lookup mechanism T for intra-block
rank can often be replaced by direct computation using highly opti-
mized hardware instructions.

Specifically, to compute the rank within the z-bit block p = B[l · z+
1..(l+ 1) · z] up to position j, i.e., rank1(p, j), one can perform bitwise
operations. First, isolate the j-bit prefix of p1. Then, the number of set
bits in this prefix can be computed efficiently using the processor’s
population count (popcount) instruction. Modern programming lan-
guages often expose this functionality directly; for instance, the Rust
standard library provides the count_ones() method on primitive in-
teger types. This operation is typically executed in constant time (of-
ten a single machine instruction) and can be significantly faster in
practice than accessing a more complex precomputed table structure,
especially for small values of z. We will discuss this in more detail in
Section 3.1.5.

To answer a query rank1(B, i), we perform the following constant-
time steps: Calculate the relevant indices: superblock k = ⌊(i− 1)/Z⌋,
block l = ⌊(i− 1)/z⌋, and intra-block position j = (i− 1) (mod z) + 1.
Retrieve the precomputed ranks: rankS = RS[k] from the superblock
directory and rankB = RB[l] from the block directory. Access the
z-bit block p = B[l · z + 1..(l + 1) · z] from the original bitvector B.

1 For example, using a bitmask like p & ((1≪ j) − 1)
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This access takes O(1) time on a Word RAM where the word size
w ⩾ logn ⩾ z. Compute the intra-block rank rankT = T(p, j) using
the o(n)-space constant-time mechanism T . The final rank is obtained
by summing these components:

rank1(B, i) = rankS + rankB + rankT .

All steps involve only constant-time operations (arithmetic, array lookups,
memory access of z bits, and the T lookup), hence the total query time
is O(1).

The query rank0(B, i) is then computed simply as i− rank1(B, i), also
in constant time.

3.1.2 Select

The select operation serves as the inverse to rank. Formally, for a
bitvector B and an integer i, selectb(B, i) returns the index j such that
B[j] = b and rankb(B, j) = i. This relationship can be expressed as:

rankb(B, selectb(B, i)) = i

provided the i-th occurrence of b exists.

Supporting select queries efficiently requires a different auxiliary struc-
ture compared to the fixed-size blocking used for rank. An approach
providing constant-time select within this space framework was de-
veloped by Clark [8]. It relies on a multi-level hierarchy guided by the
number of set bits (specifically, 1s, as select0 can be handled symmet-
rically or via select1 on the complemented bitvector with additional
rank structures). The core idea is to partition the bitvector B based
on the cumulative count of 1s and use multiple levels of indexing
structures to locate the i-th 1 quickly.

We begin by designing the first level of the select data structure. The
bitvector B is conceptually divided into variable-length chunks, such
that each chunk (except possibly the last) contains exactly K set bits.
A typical choice is K = Θ(logn log logn). We store an array P1 con-
taining the starting position (index in B) of each chunk. The number
of chunks is ⌈m/K⌉, where m = rank1(B,n) is the total number of 1s.
The space for P1 is

O(m/K · logn) = O(n/(logn log logn) · logn) = O(n/ log logn)

which is o(n). Given a query select1(i), the relevant chunk index can
be determined as k = ⌈i/K⌉, and its starting position retrieved from
P1.

The second step addresses how to find the target 1 within its chunk.
Let the length of a chunk be Z. We categorize chunks into two types
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based on their density. A chunk is considered sparse if its length Z is
large compared to K, specifically Z > K2. Conversely, a chunk is dense
if Z ⩽ K2. For sparse chunks, we can afford to store the relative po-
sitions (offsets from the chunk’s start) of the K set bits explicitly. The
total space required across all sparse chunks for these offsets can be
shown to be o(n) [8]. If the target 1 falls within a sparse chunk, its po-
sition is found by calculating its relative rank i ′ = (i− 1) (mod K)+ 1

and retrieving the i ′-th stored offset. For dense chunks (Z ⩽ K2), ex-
plicitly storing offsets is too costly. Instead, we introduce a second
level of structure within these dense chunks.

This second level structure subdivides each dense chunk into smaller
variable-length sub-chunks, each containing exactly k set bits, where
k = Θ((log logn)2). We store an array P2 for each dense chunk, hold-
ing the starting positions of these sub-chunks relative to the start of
the dense chunk. The total space for all P2 structures across all dense
chunks is O(m/k · logZmax) = O(n/k · logK2) = O(n/(log logn)2 ·
log(logn log logn)) = o(n).

Finally, we need to handle the sub-chunks. Let a sub-chunk have
length z. Similar to the chunk level, we distinguish between sparse sub-
chunks (z > k2) and dense sub-chunks (z ⩽ k2). For sparse sub-chunks,
we again store the relative positions of the k set bits explicitly; the to-
tal space across all sparse sub-chunks remains o(n) [8]. For dense sub-
chunks (z ⩽ k2), we require a mechanism to find the i ′′-th 1 (where
i ′′ is the rank relative to the sub-chunk start) within the z bits in con-
stant time. It is known [8] that constant-time select within a block of
size z = O(polylog n) can be achieved using an auxiliary structure
of size o(z) bits associated with the block (e.g., using precomputed
tables or other techniques). Summing over all dense sub-chunks, the
total space for these Level 3 mechanisms is o(n).

The overall query process involves navigating this hierarchy. The al-
gorithm can be summarized by the following pseudocode.

As for the rank data structure, we can state the following theorem:

Theorem 3.6. Given a bitvector B[1..n], there exists an auxiliary data struc-
ture using o(n) bits that allows computing selectb(B, i) for any valid i and
b ∈ {0, 1} in O(1) time. The original bitvector B is accessed only in read
mode. The total space required is n+ o(n) bits.

Proof. The constant query time follows from the algorithm described,
where each step (calculating indices, accessing pointer structures P1,P2,
retrieving stored offsets for sparse cases, or using the constant-time
Level 3 dense mechanism) takes O(1) time. The total auxiliary space
is the sum of the space required for P1, the relative offsets for sparse
chunks, the P2 arrays, the relative offsets for sparse sub-chunks, the
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Algorithm 3 Select1 Algorithm

1: function Select1(B, i)
2: k← ⌈i/K⌉
3: pos1 ← GetChunkStartPos(k)
4: ChunkInfo← GetChunkInfo(k)
5: if ChunkInfo indicates sparse (Z > K2) then
6: i ′ ← (i− 1) (mod K) + 1

7: offset← GetSparseChunkOffset(k, i ′)
8: return pos1 + offset

9: else
10: i ′ ← (i− 1) (mod K) + 1

11: l← ⌈i ′/k⌉
12: pos2 ← GetSubChunkStartPos(k, l)
13: SubChunkInfo← GetSubChunkInfo(k, l)
14: if SubChunkInfo indicates sparse (z > k2) then
15: i ′′ ← (i ′ − 1) (mod k) + 1

16: offset← GetSparseSubChunkOffset(k, l, i ′′)
17: return pos1 + pos2 + offset

18: else
19: i ′′ ← (i ′ − 1) (mod k) + 1

20: offset← DenseSubChunkSelect(k, l, i ′′)
21: return pos1 + pos2 + offset

22: end if
23: end if
24: end function

Level 3 dense sub-chunk mechanisms, and the structures needed
to distinguish between sparse and dense cases. As analyzed during
the description, each component requires o(n) bits with parameters
K = Θ(logn log logn) and k = Θ((log logn)2), relying on established
results [8]. Therefore, the total auxiliary space is o(n) bits, yielding
an overall space of n+ o(n) bits.

Remark 3.7. The threshold

k2 = Θ((log logn)4)

for handling the smallest dense blocks can be extremely small for
practical values of n. In implementations, if k is small enough (e.g.,
fits within a machine word or cache line), scanning the dense sub-
chunk directly to find the i ′′-th occurrence of 1 might be faster than
using the more complex theoretical o(n) mechanism or precomputed
tables. This again relates to broadword programming techniques, sim-
ilar to the optimization mentioned for rank.
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3.1.3 Entropy-Compressed Rank/Select Structures

While the preceding structures achieve optimal query time with sub-
linear additive space overhead, they still require the explicit storage
of the n-bit vector B. An alternative line of research focuses on com-
pressing the bitvector itself, aiming for space usage closer to the
information-theoretic minimum while preserving efficient query ca-
pabilities. The structure developed by Raman, Raman, and Rao [48]
provides such a solution, offering constant-time rank and select opera-
tions within space related to the zero-order entropy of the bitvector.

The core strategy involves partitioning the bitvector B[1..n] into blocks
of a fixed size b, commonly chosen as b = ⌊12 log2 n⌋ to facilitate the
construction of lookup tables within o(n) space. Each block Bj (rep-
resenting B[(j− 1)b+ 1..jb]) is not stored directly but is replaced by
a pair (cj,oj) that implicitly encodes its content. The first component,
cj, denotes the class of the block, defined as the population count
(number of set bits) within Bj. The number of possible classes is b+ 1,
requiring ⌈log2(b+1)⌉ bits per class value. The second component, oj,
is the offset, which uniquely identifies the specific pattern of Bj among
all possible b-bit blocks belonging to class cj. There are precisely

(
b
cj

)
such blocks. The offset oj is an integer in the range [0,

(
b
cj

)
− 1], as-

signed based on a fixed enumeration (e.g., lexicographical order) of
the blocks within each class. Storing oj requires ⌈log2

(
b
cj

)
⌉ bits.

The compressed representation of B primarily consists of two se-
quences: a sequence C = c1c2 . . . cn/b containing the classes of all
blocks, and a sequence O = o1o2 . . . on/b containing the correspond-
ing offsets. Note that the space required for each offset oj varies de-
pending on its class cj. This variable-length nature contributes signif-
icantly to the overall compression, as blocks with very few or very
many set bits (low cj or high cj) result in small values of

(
b
cj

)
, thus

requiring fewer bits for their offsets.

To support constant-time queries, we need to store some auxiliary
information. The structure utilizes a hierarchical approach, grouping
the small blocks into superblocks, typically of size Z = Θ(log2 n)

bits (containing s = Z/b = Θ(log2 n/ logn) small blocks). Thus, we
employ two main auxiliary structures:

1. A superblock directory stores, for each superblock boundary
k · Z, the absolute rank rank1(B, k · Z). This resembles the RS

array from Section 3.1.1 and occupies O(n/ logn) bits.

2. An index structure provides pointers to the beginning of the
offset data oj for the first block j of each superblock within the
sequence O. Since the offsets have variable lengths, this typically
involves storing prefix sums of the offset lengths, which can
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be done within o(n) bits overhead while supporting constant-
time access. Similar structures might be needed for the class
sequence if it is further processed.

Furthermore, precomputed lookup tables are essential for constant-
time intra-block operations. Let Trank be a table such that Trank[c][o][k]

returns the rank within the k-th position of the block uniquely iden-
tified by class c and offset o. Similarly, let Tselect be a table such that
Tselect[c][k

′] returns the offset o and the position p of the k ′-th set bit
within any block of class c. With b = ⌊12 log2 n⌋, the total size of these
tables can be bounded by o(n) bits.

To compute rank1(B, i), the algorithm first determines the superblock
k and the block j containing index i. The absolute rank up to the
start of superblock k is retrieved from the superblock directory. The
ranks contributed by the full blocks between the start of superblock k

and block j are calculated by summing their respective class values cl
(retrieved from sequence C). Finally, the class cj and offset oj for block
j are retrieved, and the intra-block rank up to the relative position
within Bj is found using the Trank lookup table. All these steps take
constant time.

The select1(B, i) query uses the superblock directory to identify the su-
perblock k containing the i-th set bit via binary search or related tech-
niques on the precomputed ranks (achievable in O(1) time with ap-
propriate auxiliary structures). Then, it determines the specific block
j within that superblock by examining the class sequence C and po-
tentially using the offset pointers. Finally, the Tselect table is used
with the class cj and the relative rank within the block to find the
intra-block position.

Combining these techniques, Raman, Raman, and Rao established
the following result for their indexable dictionary structure, which is
equivalent to a compressed bitvector supporting rank and select:

Theorem 3.8 ([48]). Given a bitvector B[1..n] containing m set bits, there
exists a data structure using

B(n,m) + o(n) +O(log logn)

bits, where B(n,m) = ⌈log2

(
n
m

)
⌉, that supports rankb(B, i) and selectb(B, i)

queries for any valid i and b ∈ {0, 1} in O(1) time on the Word RAM model.

The term B(n,m) represents the information-theoretic minimum space
required to store an arbitrary subset of size m from a universe of size
n. For m = p ·n, Stirling’s approximation shows that

B(n,m) ≈ n(−p log2 p− (1− p) log2(1− p)) = nH0(B)
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bits, where H0(B) is the zero-order empirical entropy of the bitvec-
tor. Thus, this structure achieves space close to the entropy bound,
providing significant compression for biased bitvectors while main-
taining optimal query performance. The small additive O(log logn)

term originates from auxiliary structures related to universe reduc-
tion techniques employed in the full construction [48].

3.1.4 Compressing Sparse Bitvectors

The preceding sections presented methods for supporting rank and se-
lect queries, ranging from structures operating on the plain n-bit vec-
tor with o(n) additive overhead (3.1.1, 3.1.2) to entropy-compressed
representations aiming for space close to the information-theoretic
minimum B(n,m) (3.1.3). While structures like the one presented by
Raman, Raman and Rao [48] provide general compression adapting
to the bitvector’s density, scenarios involving high sparsity, where the
number of set bits m = rank1(B,n) is substantially smaller than the
total length n (m ≪ n), admit specialized compression techniques.
These methods focus directly on the properties inherent to sparse
sets, potentially offering different space-time trade-offs compared to
general entropy-based approaches.

In such sparse settings, we can leverage compression techniques that
exploit the low density of set bits. The Elias-Fano representation,
previously introduced in Section 2.6.4, provides a highly effective
method for this task. Recall that Elias-Fano encodes a monotonically
increasing sequence of m integers up to a maximum value n. We
can represent the bitvector B by encoding the sequence of indices
{i | B[i] = 1}.

As detailed in [57] in the context of quasi-succinct indices for infor-
mation retrieval, the Elias-Fano representation achieves a space com-
plexity of approximately m log2(n/m) +O(m) bits. This is remark-
ably close to the information-theoretic lower bound for represent-
ing a subset of size m from a universe of size n, often expressed as
nH0(B) +O(m) bits. The crucial advantage is that the space depends
primarily on m, the number of set bits, rather than the full length n,
leading to significant compression when m is small.

This compressed representation directly supports efficient operations.
The select1(i) operation, can typically be implemented in constant
time on average, often leveraging auxiliary pointers within the Elias-
Fano structure as engineered for example in [57]. However, this space
efficiency comes at the cost of potentially slower rank1 and accessing
B[i] operations compared to the structures seen previously. These op-
erations usually involve decoding parts of the Elias-Fano structure
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and may take O(log(n/m)) time or depend on the specific implemen-
tation details [41].

3.1.5 Practical Considerations

While the asymptotic analysis guarantees O(1) query time and o(n)

extra space for the rank and select structures presented before, achiev-
ing high performance in practice requires careful consideration of
architectural factors and constant overheads hidden in the o(n) term.
Memory latency, cache efficiency, and instruction-level parallelism of-
ten dominate the actual running time on modern processors.

A particularly effective approach for optimizing rank and select im-
plementations leverages broadword programming (also known as Swar

- Simd within a Register). This technique treats machine registers as
small parallel processors, performing operations on multiple data
fields packed within a single word using standard arithmetic and
logical instructions. Vigna [55] applied these techniques to rank and
select queries, leading to highly efficient practical implementations.

The rank9 structure proposed by Vigna [55] exemplifies this approach.
It employs a two-level hierarchy, similar in concept to the structure
in Section 3.1.1, but critically relies on broadword algorithms for the
final rank computation within a machine word (specifically, sideways
addition or population count). Instead of large precomputed lookup
tables for small blocks, rank9 uses carefully designed constants and
bitwise operations (detailed in Algorithm 1 of [55]) to compute the
rank within a 64-bit word quickly. This typically involves storing rel-
ative counts for sub-blocks (e.g., seven 9-bit counts within a 64-bit
word) in the second level. The advantages of this approach include
speed, resulting from the exploitation of fast register operations and
the avoidance of large table lookups, often outperforming other meth-
ods in practice. It also offers space efficiency, requiring relatively
low overhead (typically around 25% on top of the original bitvector
B) mainly for the cumulative counts. Furthermore, broadword algo-
rithms are generally branch-free, benefiting performance on modern
pipelined processors by avoiding potential misprediction penalties.

Similarly, Vigna [55] developed broadword algorithms for selection
within a word (Algorithm 2 in the paper). The companion select9

structure integrates these intra-word selection capabilities with a multi-
level inventory scheme. The objective of select9 is to support high-
performance selection queries, often achieving near constant-time ex-
ecution, through hierarchical indexing combined with efficient broad-
word search for the final location. This capability involves an addi-
tional space cost, typically measured at approximately 37.5% relative
to the rank9 structure.
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Furthermore, a major bottleneck in rank/select operations is often
memory access latency. To mitigate this, interleaving the auxiliary data
structures is highly recommended. For instance, storing a first-level
(superblock) rank count immediately followed by its corresponding
second-level (sub-block) counts increases the probability that all nec-
essary auxiliary information for a query resides within the same
cache line. This simple layout optimization can dramatically reduce
cache misses compared to storing different levels of the hierarchy in
separate arrays.

3.2 wavelet trees

Building upon the concepts established for bitvectors in Section 3.1,
we now extend our focus to sequences over general alphabets us-
ing Wavelet Trees. Introduced by Grossi, Gupta, and Vitter [21], the
wavelet tree is a highly versatile data structure. It functions as a self-
index, capable of representing a sequence S[1..n] drawn from an al-
phabet Σ = {1, . . . ,σ} within space close to its compressed size, while
supporting fundamental query operations directly on this representa-
tion and allowing reconstruction of the original sequence data. This
characteristic makes wavelet trees a cornerstone in applications like
compressed full-text indexing, for example within the FM-index [15],
where they provide efficient support for the essential rank queries
during the backward search phase [42].

While the core idea of hierarchical alphabet partitioning shares con-
ceptual similarities with earlier structures, such as Chazelle’s struc-
ture for geometric point grids [7] and Kärkkäinen’s work on repetition-
based indexing [30], the specific formulation and operational capa-
bilities defined by Grossi et al. [21] established the wavelet tree as
a broadly applicable tool for sequence processing [42]. Its flexibility
derives from its capacity to represent data variously as sequences,
permutations, or point grids [14, 23, 42].

We consider a sequence S[1..n] = s1s2 . . . sn, with si ∈ Σ = {1, . . . ,σ}.
The primary operations of interest are generalizations of those de-
fined for bitvectors:

• Access(S, i): S× [1..n]→ Σ. Returns the symbol S[i].

• rankc(S, i): S× Σ× [0..n] → [0..n]. Returns the number of occur-
rences of symbol c in the prefix S[1..i], i.e., |{j | 1 ⩽ j ⩽ i,S[j] =
c}|. We define rankc(S, 0) = 0.

• selectc(S, j): S × Σ × [1..n] → [1..n] ∪ {⊥}. Returns the position
(index) k such that S[k] = c and rankc(S, k) = j. If the j-th occur-
rence does not exist, it returns a special symbol ⊥.
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A naive approach using σ distinct bitvectors Bc (where Bc[i] = 1 if
and only if S[i] = c) reduces these operations to bitvector rank/select
(rankc(S, i) = rank1(Bc, i) and selectc(S, j) = select1(Bc, j)). However,
augmenting these bitvectors for O(1) time queries using the methods
of Section 3.1 requires nσ+ o(nσ) total bits, which is inefficient com-
pared to the n⌈logσ⌉ bits of the plain representation, especially for
large σ [41]. Wavelet trees offer a significantly more space-conscious
solution.

3.2.1 Structure and construction

The standard wavelet tree for a sequence S[1..n] over Σ = {1, . . . ,σ}
is a balanced binary tree structure. Each node v corresponds to an
alphabet sub-range [av,bv] ⊆ Σ and implicitly represents the subse-
quence Sv containing all characters si from the original sequence S

such that si ∈ [av,bv], maintaining their relative order.

The construction proceeds recursively:

• The root node vroot corresponds to the full alphabet range [1,σ]
and the entire sequence Svroot = S.

• For an internal node v representing the range [av,bv] with av <

bv:

1. Define a midpoint mv = ⌊(av + bv)/2⌋.

2. Store a bitmap Bv[1..|Sv|] where Bv[k] = 0 if the k-th charac-
ter of Sv is in [av,mv], and Bv[k] = 1 if it is in [mv + 1,bv].

3. Recursively construct the left child vl for the alphabet range
[av,mv] and the subsequence Svl

formed by characters s ∈
Sv with s ⩽ mv.

4. Recursively construct the right child vr for the alphabet
range [mv+ 1,bv] and the subsequence Svr formed by char-
acters s ∈ Sv with s > mv.

• A leaf node v represents a single symbol alphabet range [av,av]

(i.e., av = bv) and stores no bitmap.

The height of this tree is h = ⌈logσ⌉. The construction process, de-
tailed in Algorithm 4, takes O(n logσ) time, as each symbol from S is
processed at each level of the tree.

The space usage of this pointer-based wavelet tree consists of the
bitmaps and the pointers. The bitmaps across all nodes at any given
level collectively store exactly n bits. With h = ⌈logσ⌉ levels, the total
space for bitmaps is n⌈logσ⌉. The tree has σ leaves and σ− 1 inter-
nal nodes. Storing child and parent pointers (e.g., 3(σ− 1) pointers,
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Algorithm 4 Building a wavelet tree

function build_wt(S,n)
T ← build(S,n, 1,σ)
return T

end function
function build(S,n,a,b) ▷ Takes a string S[1,n] over [a,b]

if a = b then
Free S
return null

end if
v← new node
m← ⌊(a+ b)/2⌋
z← 0 ▷ number of elements in S that are ⩽ m

for i← 1 to n do
if S[i] ⩽ m then

z← z+ 1

end if
end for
Allocate strings Sleft[1, z] and Sright[1,n− z]

Allocate bitmap v.B[1,n]
z← 0

for i← 1 to n do
if S[i] ⩽ m then

bitclear(v.B, i) ▷ set i-th bit of v.B to 0

z← z+ 1

Sleft[z]← S[i]

else
bitset(v.B, i) ▷ set i-th bit of v.B to 1

Sright[i− z]← S[i]

end if
end for
Free S
v.left← build(Sleft, z,a,m)

v.right← build(Sright,n− z,m+ 1,b)
Pre-process v.B for rank and select queries
return v

end function

each ≈ logσ bits) adds an overhead of O(σ logσ) bits (or O(σ logn)

if indices into an array are used), which can dominate for large σ.
Each bitmap Bv must also be augmented with o(|Sv|) bits to support
constant-time rank/select (Section 3.1), contributing an additional
o(n logσ) bits overall.

Tracking symbols

The wavelet tree supports the primary sequence operations by trans-
lating them into traversals involving bitvector rank/select queries.
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Figure 12: Wavelet tree for the sequence wookies_wield_...

3.2.1.1 Access

Computing access(S, i) involves a top-down traversal from the root
vroot. At each internal node v (representing range [av,bv] with mid-
point mv), we examine the bit Bv[iv], where iv is the current in-
dex within the node’s implicit sequence Sv. If Bv[iv] = 0, we pro-
ceed to the left child vl (range [av,mv]) and update the index to
ivl

= rank0(Bv, iv). If Bv[iv] = 1, we proceed to the right child vr
(range [mv + 1,bv]) and update the index to ivr = rank1(Bv, iv). This
repeats until a leaf node representing a single symbol [a,a] is reached;
this a is S[i]. The process performs ⌈logσ⌉ bitvector rank operations
in O(logσ) time. Algorithm 5 details this.

3.2.1.2 Select

Computing selectc(S, j) involves an upward traversal from the leaf
node u corresponding to symbol c. Let the index within the leaf level
be ju = j. To move to the parent v, we determine if u is the left
(vl) or right (vr) child. If u = vl, the corresponding index in the
parent’s bitmap Bv is jv = select0(Bv, ju). If u = vr, the index is
jv = select1(Bv, ju). We repeat this process, updating j at each level,
until the root node is reached. The final index jroot is the position
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Algorithm 5 Access queries on a wavelet tree
function access(T , i) ▷ T is the sequence S seen as a wavelet tree

v← Troot ▷ start at the root node
[a,b]← [1,σ]
while a ̸= b do

if access(v.B, i) = 0 then ▷ i-th bit of the bitmap of v
i← rank0(v.B, i)
v← v.left ▷ move to the left child of node v

b← ⌊(a+ b)/2⌋
else

i← rank1(v.B, i)
v← v.right ▷ move to the right child of node v

a← ⌊(a+ b)/2⌋+ 1

end if
end while
return a

end function

of the j-th c in S. This requires ⌈logσ⌉ bitvector select operations in
O(logσ) time. Algorithm 6 shows the recursive structure.

Algorithm 6 Select queries on a wavelet tree
function selectc(S, j)

return select(T .root, 1,σ, c, j)
end function
function select(v,a,b, c, j)

if a = b then
return j

end if
if c ⩽ ⌊(a+ b)/2⌋ then

j← select(v.left,a, ⌊(a+ b)/2⌋, c, j) return select0(v.B, j)
else

j← select(v.right, ⌊(a+ b)/2⌋+ 1,b, c, j)
return select1(v.B, j)

end if
end function

3.2.1.3 Rank

Computing rankc(S, i) uses a top-down traversal similar to access. We
start at the root vroot with index iroot = i. At each node v (range
[av,bv], midpoint mv), we check if the target symbol c belongs to the
left sub-range (c ⩽ mv) or the right sub-range (c > mv). If c ⩽ mv, we
descend to the left child vl and update the index to ivl

= rank0(Bv, iv).
If c > mv, we descend to the right child vr and update the index
to ivr = rank1(Bv, iv). The traversal continues until the leaf node u

corresponding to symbol c is reached. The final index iu at this leaf



3.2 wavelet trees 58

is the value rankc(S, i). This requires ⌈logσ⌉ bitvector rank operations
in O(logσ) time. Algorithm 7 formalizes this.

Example 3.9. Consider the computation of ranke(S, 13) shown in Fig-
ure 13. We start at the root with index i = 13. Here, e corresponds to
bit 0, so we compute rank0(13) = 6 and descend left with the new in-
dex i = 6. At this node, e corresponds to bit 1; evaluating rank1(6) = 5,
we proceed right with index i = 5. In the next node, e maps to bit 0;
calculating rank0(5) = 3, we descend left with i = 3. We reach the
node for e, where it corresponds locally to bit 1. The final computa-
tion is rank1(3) = 2. Thus, ranke(S, 13) = 2.
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Figure 13: ranke(S, 13) on the wavelet tree of Figure 12.

Pointerless Representation: To remove the O(σ logσ) pointer overhead,
the pointerless wavelet tree concatenates bitmaps level-wise [36, 37].
Let Bl be the concatenated bitmap for level l. If a node v at level l
corresponds to the range [sv, ev] in Bl, its left child’s range in Bl+1

is

[(l+ 1)n+ rank0(Bl, sv − 1) + 1, (l+ 1)n+ rank0(Bl, ev)]

Its right child’s range is

[(l+ 1)n+ zl + rank1(Bl, sv − 1) + 1, (l+ 1)n+ zl + rank1(Bl, ev)]
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Algorithm 7 Rank queries on a wavelet tree

function rankc(S, i)
v← Troot ▷ start at the root node
[a,b]← [1,σ]
while a ̸= b do

if c ⩽ ⌊(a+ b)/2⌋ then
i← rank0(v.B, i)
v← v.left ▷ move to the left child of node v

b← ⌊(a+ b)/2⌋
else

i← rank1(v.B, i)
v← v.right ▷ move to the right child of node v

a← ⌊(a+ b)/2⌋+ 1

end if
end while
return i

end function

where zl = rank0(Bl,n) is the total 0-count at level l. This achieves
n⌈logσ⌉+o(n logσ) total space. Navigation requires extra rank opera-
tions per level compared to the pointer-based version ([9]), which can
impact practical performance, although the asymptotic query time
remains O(logσ).

3.2.2 Compressed Wavelet Trees

The standard wavelet tree representations (pointer-based and point-
erless) achieve space proportional to n logσ. However, when the se-
quence S itself is compressible (i.e., its empirical entropy is lower than
logσ), it is desirable for the index structure to reflect this compress-
ibility. Wavelet trees can be adapted to achieve space bounds related
to the empirical entropy of S, primarily through two main strategies:
directly compressing the bitmaps stored within the nodes, or reshap-
ing the tree based on symbol frequencies.

3.2.2.1 Compressing the Bitvectors

This approach maintains the balanced binary structure of the wavelet
tree but replaces the plain bitmaps Bv at each internal node v with
compressed representations that still support efficient rank and select
queries. As explored in Section 3.1.4, various techniques exist for com-
pressing sparse or biased bitvectors. If we employ a representation for
each Bv (of length Nv = |Sv|) that uses NvH0(Bv) + o(Nv) bits while
maintaining O(1) query times for rank and select (e.g., using struc-
tures based on Raman et al. [48] or improved variants [46]), the total
space complexity aggregates advantageously.
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Theorem 3.10 (Entropy-Compressed WT Space (Bitmaps) [16, 21, 41]).
A wavelet tree for S[1..n] over Σ = {1, . . . ,σ}, using node bitmaps com-
pressed to their zero-order entropy with O(1)-time rank/select support, can
be stored in

nH0(S) + o(n logσ) bits.

The query times for access, rank, and select remain O(logσ).

Proof sketch. The core idea relies on the property that the sum of zero-
order entropies of the bitmaps at any level l is upper bounded by the
sum at level l− 1. Summing across all internal nodes, the total space
for the compressed bitmaps relates directly to the zero-order entropy
of the original sequence S:∑

v internal

|Sv|H0(Bv) = nH0(S)

The o(n logσ) term arises from aggregating the sublinear o(Nv) over-
heads from each node’s rank/select structure across all levels. Since
rank/select on each compressed bitmap is O(1), the total query time
remains determined by the tree height, O(logσ).

While theoretically achieving optimal space relative to H0(S), prac-
tical implementations using compressed bitmaps (like those based
on RRR found in libraries such as SDSL [18]) can exhibit higher
query latency compared to using plain, uncompressed bitmaps due
to the computational overhead of performing rank/select on the com-
pressed format [9].

3.2.2.2 Huffman-Shaped Wavelet Trees

Instead of compressing the content (bitmaps), this strategy compresses
the structure itself by adapting the tree shape to the symbol frequen-
cies fc = rankc(S,n) in S. The wavelet tree is given the shape of a
Huffman tree [26] constructed for the symbols based on their frequen-
cies [22, 35]. In this structure, a symbol c occurring fc times resides
at a leaf at depth |h(c)|, where h(c) is its Huffman code. The bitmaps
Bv are stored uncompressed at the internal nodes.

The total number of bits stored in the plain bitmaps across the entire
tree is precisely the length of the Huffman-encoded sequence:∑

c∈Σ

fc|h(c)| ⩽ n(H0(S) + 1) bits.

Adding the overhead for rank/select support on these plain bitmaps
(o(n(H0(S) + 1)) total) and the space to store the Huffman model
itself (e.g., O(σ logσ) bits, reducible for canonical codes [9]), gives
the total space.
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Theorem 3.11 (Huffman-Shaped WT Performance [35, 41]). A Huffman-
shaped wavelet tree using plain bitmaps (with O(1) rank/select support) oc-
cupies space bounded by

n(H0(S) + 1) + o(n(H0(S) + 1)) +O(σ logσ) bits.

It supports access, rank, and select. The worst-case query time is O(dmax),
where dmax is the maximum depth (potentially O(n), but typically bounded
to O(logσ) [43]). The average query time, assuming queries are distributed
according to symbol frequencies (fc/n), is O(1+H0(S)).

This approach achieves compression related to H0(S) through struc-
tural adaptation rather than bitmap compression, often leading to
faster average query times (O(1 + H0(S)) vs O(logσ)) for statisti-
cally skewed query distributions, while using potentially simpler and
faster plain bitmap rank/select structures. Pointerless versions based
on canonical Huffman codes are also possible [9].

3.2.2.3 Higher-Order Entropy Compression

To capture statistical dependencies beyond symbol frequencies, wavelet
trees are often used on the Burrows-Wheeler Transformed [6] se-
quence SBwt. The Bwt groups symbols preceded by the same context
of length k, making SBwt highly compressible by methods sensitive to
local statistics. The k-th order empirical entropy, Hk(S), quantifies this
context-dependent compressibility (see Section 2.5). It is known that∑

A∈Σk |SA|H0(SA) = nHk(S), where SA is the sequence of symbols
following context A [38].

Building a single wavelet tree over the entire SBwt and using zero-
order entropy compression on its internal bitmaps (as in Section 3.2.2.1)
allows the structure to achieve space related to Hk(S) for the original
sequence S.

Theorem 3.12 (Hk-Compressed WT [14, 43]). Let SBwt be the Burrows-
Wheeler Transform of S. A wavelet tree built over SBwt using node bitmaps
compressed to their zero-order entropy (requiring NvH0(Bv) + o(Nv) bits
per node v) occupies a total space of

nHk(S) + o(n logσ) bits

for any k ⩽ α logσ n (0 < α < 1).

Proof sketch. The space bound follows because the zero-order entropy
of the wavelet tree bitmaps over SBwt sums to nH0(S

Bwt), and H0(S
Bwt)

effectively captures Hk(S) due to the context-grouping property of
the Bwt [38, 43]. The o(n logσ) term accumulates the overheads of
the compressed rank/select structures.
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This structure supports the rank operations on SBwt needed for FM-
index pattern matching in O(logσ) time per operation.

This connection is crucial for compressed full-text indexing. Practical
variants exist, such as partitioning SBwt and using Huffman-shaped
wavelet trees on the blocks [31], which may offer different practical
performance trade-offs. The choice between RLE and GE for bitmap
encoding in this context was analyzed in [14], favoring RLE-like ap-
proaches for achieving Hk.

3.2.3 Wavelet Matrices and Quad Vectors

Further refinements address practical performance bottlenecks, pri-
marily memory latency during tree traversal and the overhead as-
sociated with large alphabets in pointerless or Huffman representa-
tions.

3.2.3.1 The Wavelet Matrix

The wavelet matrix [9] provides an alternative layout for the point-
erless wavelet tree that simplifies navigation and improves speed. It
maintains the level-wise concatenated bitmaps B0,B1, . . . ,Bh−1 (where
h = ⌈logσ⌉) and stores the counts zl = rank0(Bl,n) for each level l.
The key difference lies in the mapping between levels: a position i

in Bl corresponding to a 0-bit maps to position rank0(Bl, i) in Bl+1,
while a position corresponding to a 1-bit maps to position zl+ rank1(Bl, i)
in Bl+1.

Theorem 3.13 (Wavelet Matrix Performance [9]). The wavelet matrix
represents S[1..n] using

n⌈logσ⌉+ o(n logσ) bits

(where o(n logσ) is for rank/select support on the h bitmaps, and the zl
values require negligible O(logσ logn) bits). It supports access, rank, and
select queries in O(logσ) time, executing exactly one bitvector rank or select
operation per level traversed.

This simplified navigation avoids the extra rank operations needed in
the strict pointerless WT and eliminates pointer overhead, making it
practically faster than pointerless trees and competitive with pointer-
based trees, especially for large σ [9]. It can also be combined with
bitmap compression or specialized Huffman shaping [9].
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3.2.3.2 4-ary (Quad) Wavelet Trees

To combat the O(logσ) cache misses inherent in traversing a binary
tree, 4-ary wavelet trees reduce the tree height to h ′ = ⌈(logσ)/2⌉
[39]. Each internal node partitions its alphabet range [av,bv] into four
sub-ranges based on the next two bits in the symbols’ binary repre-
sentation. Instead of a bitmap, each node stores a quad vector Qv (a
sequence over {0, 1, 2, 3} or {00, 01, 10, 11}) indicating to which of the
four children each symbol belongs.

Supporting queries requires specialized rank/select operations on
these quad vectors. Structures achieving O(1) time for quad vector
rank/select with o(Nv log 4) = o(Nv) bits of overhead per node (where
Nv is the quad vector length) have been developed [39].

Theorem 3.14 (4-ary WT Performance [39]). A 4-ary wavelet tree using
O(1)-time rank/select structures on quad vectors represents S[1..n] in

n⌈logσ⌉+ o(n logσ) bits

and supports access, rank, and select in O(logσ) time, specifically requiring
O(⌈(logσ)/2⌉) quad vector rank or select operations.

Proof sketch. Each level effectively stores 2 bits per original symbol.
With ≈ (logσ)/2 levels, the total space for the quad vectors is n× 2×
(logσ)/2 = n logσ bits. The o(n logσ) term accounts for the aggre-
gated overhead of the quad vector rank/select structures. The query
time is determined by the reduced tree height.

The principal advantage lies in the potential halving of cache misses
during queries, leading to significant practical speedups in latency-
bound scenarios, as demonstrated experimentally in [39], particularly
when implemented as a 4-ary wavelet matrix.

3.3 degenerate strings

The concepts of rank and select queries, fundamental tools in string
processing and succinct data structures as explored earlier in this
chapter (Section 3.1, Section 3.2), can be extended to the domain of de-
generate strings. This representation is often used to model uncertainty
or variability in sequences, particularly in biological contexts.

Recall that a standard string S of length n over a finite non-empty
alphabet Σ is a sequence S = s1s2 . . . sn where each si ∈ Σ. A degen-
erate string generalizes this:
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Definition 3.15 (Degenerate String [17]). A degenerate string is a se-
quence X = X1X2 . . . Xn, where each Xi is a subset of the alphabet Σ (i.e.,
Xi ⊆ Σ). The value n is termed the length of X. The size of X, denoted by
N, is defined as N =

∑n
i=1 |Xi|. We denote the number of empty sets (∅)

among X1, . . . ,Xn by n0.

Degenerate strings were introduced by Fischer and Paterson [17] and
are frequently employed in bioinformatics, for example, to represent
DNA sequences with ambiguities (using IUPAC codes) or to model
sequence variations within a population [2, 3].

Alanko et al. [2] introduced the counterparts of rank and select for
degenerate strings:

Definition 3.16 (Subset Rank and Select [2]). Given a degenerate string
X = X1 . . . Xn over alphabet Σ, a character c ∈ Σ, an index i ∈ {1, . . . ,n},
and a rank j ∈N+, we define:

• subset-rankX(i, c): Returns the number of sets among the first i sets
X1, . . . ,Xi that contain the symbol c. Formally, |{k | 1 ⩽ k ⩽
i and c ∈ Xk}|.

• subset-selectX(j, c): Returns the index k such that Xk is the j-th set
in the sequence X (from left to right) that contains the symbol c. If
fewer than j such sets exist, the result is undefined or signals an error.

Example 3.17. Let X = {T}{G}{A, C, G, T}{}{}{C,G}{}{A}{}{A}{A,C}{}{}{A}{A}

be a degenerate string of length n = 15 over Σ = {A, C, G, T}. Then:

• subset-rankX(8, A) = 2, as the sets containing ’A’ up to index 8

are X3 and X8.

• subset-selectX(2, G) = 3, as the sets containing ’G’ are X2 (index
2, 1st), X3 (index 3, 2nd), and X6 (index 6, 3rd). The index of the
2nd such set is 3.

The motivation for studying these queries in [2] arose from pange-
nomics applications, particularly for fast membership queries on de
Bruijn graphs represented via the Spectral Burrows-Wheeler Trans-
form (SBWT) [1]. In the SBWT framework, a k-mer query translates
to 2k subset-rank queries on a specific degenerate string.

A naive solution involves storing a bitvector Bc of length n for each
c ∈ Σ, marking the presence of c in Xk at Bc[k]. Standard O(1)-
time rank and select on these bitvectors suffice (subset-rankX(i, c) =

rank1(Bc, i) and subset-selectX(j, c) = select1(Bc, j)), but the total space
is O(σn) bits, which is impractical for large σ or n.
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3.3.1 Subset Wavelet Trees

To address the space issue, Alanko et al. [2] introduced the Sub-
set Wavelet Tree (SWT), generalizing the standard Wavelet Tree (Sec-
tion 3.2) to degenerate strings.

The SWT is a balanced binary tree over Σ. Each node v represents an
alphabet partition Av (root is Σ), with children representing halves of
Av. A sequence Qv at node v contains subsets Xk from the original
string that intersect with Av (plus empty sets at the root). Each node
v stores two bitvectors, Lv and Rv, of length |Qv|, preprocessed for
rank/select:

• Lv[k] = 1 ⇐⇒ the k-th set in Qv intersects the first half of Av.

• Rv[k] = 1 ⇐⇒ the k-th set in Qv intersects the second half of
Av.

Often, Lv and Rv are combined into a base-4/base-3 sequence requir-
ing specialized rank support.

subset-rankX(i, c) is answered by traversing from the root to the leaf
for c. At node v, if c is in the left partition, update i ← rank1(Lv, i)
and go left; otherwise, update i← rank1(Rv, i) and go right. The final
i is the result (Algorithm 8).

subset-selectX(j, c) is answered by traversing from the leaf for c up to
the root. Moving from child v to parent u, if v is the left child, update
j ← select1(Lu, j); otherwise, update j ← select1(Ru, j). The final j is
the result (Algorithm 9).

Algorithm 8 Subset-Rank Query using SWT [2]

Require: Character c from [1,σ], index i

Ensure: The number of subsets Xk such that k ⩽ i and c ∈ Xk

1: function SubsetRank(c, i)
2: v← root
3: [l, r]← [1,σ]
4: while l ̸= r do
5: mid← ⌊(l+ r− 1)/2⌋
6: if c ⩽ mid then
7: r← mid

8: i← rank1(Lv, i)
9: v← left child of v

10: else
11: l← mid+ 1

12: i← rank1(Rv, i)
13: v← right child of v
14: end if
15: end while
16: return i

17: end function
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Algorithm 9 Subset-Select Query using SWT [2]

Require: Character c from [1,σ], rank j

Ensure: The index k such that Xk is the j-th set containing c

1: function SubsetSelect(c, j)
2: v← leaf node corresponding to c

3: while v ̸= root do
4: u← parent of v
5: if v = left child of u then
6: j← select1(Lu, j)
7: else
8: j← select1(Ru, j)
9: end if

10: v← u

11: end while
12: return j

13: end function

With constant-time rank/select on node bitvectors, SWT queries take
O(logσ) time. The space complexity depends on the structure of
the sets. A key case highlighted in [2] is that of balanced degenerate
strings, where the total size N equals the length n (implicitly, each
non-empty set has size 1, relevant for SBWT applications).

Theorem 3.18 (SWT Space Complexity for Balanced Strings [2]). The
subset wavelet tree of a balanced degenerate string takes 2n logσ+o(n logσ)

bits of space and supports subset-rank and subset-select queries in O(logσ)

time.

The o(n logσ) term covers the overhead for rank/select structures on
the node bitvectors. Practical performance hinges on efficient rank (es-
pecially rank-pair queries [2]) on the internal base-3/4 sequences.

3.3.2 Improved Reductions and Bounds

While the SWT offered a valuable first step, Bille et al. [5] revisited
the subset rank-select problem, achieving significant theoretical and
practical advances by focusing on reductions to standard rank-select
operations on regular strings.

They made three significant contributions in this context. First, they
introduced the parameter N and revisited the problem through re-
ductions to the regular rank-select problem, deriving flexible com-
plexity bounds based on existing rank-select structures, as detailed
in Theorem 3.19. Second, they established a worst-case lower bound
of N logσ − o(N logσ) bits for structures supporting subset-rank or
subset-select, and demonstrated that, by leveraging standard rank-
select structures, their bounds often approach this lower limit while
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maintaining optimal query times (Theorem 3.20). Lastly, they imple-
mented and compared their reductions to prior implementations, achiev-
ing twice the query speed of the most compact structure from [2]
while maintaining comparable space usage. Additionally, they de-
signed a vectorized structure that offers a 4-7x speedup over compact
alternatives, rivaling the fastest known solutions.

Theorem 3.19 (General Upper Bound [5]). Let X be a degenerate string
of length n, size N, and containing n0 empty sets over an alphabet [1,σ].
Let D denote a Db(ℓ,σ)-bit data structure for a length-ℓ string over [1,σ],
supporting:

• rank queries in Dr(ℓ,σ) time, and

• select queries in Ds(ℓ,σ) time.

The subset rank-select problem on X can be solved under the following con-
ditions:

(i) (Case n0 = 0): The structure requires:

Db(N,σ) +N+ o(N) bits,

and supports:

subset-rank in Dr(N,σ) +O(1) time,

subset-select in Ds(N,σ) +O(1) time.

(ii) (Case n0 > 0): The bounds from case (i) apply with the following
substitutions:

N ′ = N+n0 and σ ′ = σ+ 1.

(iii) (Alternative Bound): The structure uses additional Bb(n,n0) bits of
space and supports:

subset-rank in Dr(N,σ) +Br(n,n0) time,

subset-select in Ds(N,σ) +Bs(n,n0) time.

Here, B refers to a data structure on the length-n bitstring E (indicat-
ing empty sets) that contains n0 1s, which:

• uses Bb(n,n0) bits,

• supports rank1(·) in Br(n,n0) time, and

• supports select0(·) in Bs(n,n0) time.
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By applying succinct rank-select structures (like Golynski et al. [20])
to these bounds, [5] achieved improvements in query times with-
out significantly increasing space usage compared to the SWT ap-
proach. For instance, substituting the Golynski et al. structure into
Theorem 3.19 (i) results in a data structure occupying N logσ+N+

o(N logσ +N) bits, supporting subset-rank in O(log logσ) time and
subset-select in constant time. This improves the space constant from
2 to 1 + 1/ logσ compared to Alanko et al. [2] for balanced strings,
while exponentially reducing query times.

For n0 > 0, Theorem 3.19 (ii) modifies the bounds to (N+n0) log(σ+

1) + (N+ n0) + o(n0 logσ+N logσ+N+ n0) bits, maintaining the
same improved query times. When n0 = o(N) and σ = ω(1), the
space matches the n0 = 0 case. Alternatively, Theorem 3.19(iii) allows
for tailored bitvector structures sensitive to n0.

Theorem 3.20 (Space Lower Bound [5]). Let X be a degenerate string of
size N over an alphabet [1,σ]. Any data structure supporting subset-rank or
subset-select on X must use at least N logσ− o(N logσ) bits in the worst
case.

In Theorem 3.20 we aim to establish a lower bound on the space
required to represent X while supporting subset-rank or subset-select.
Since these operations allow us to reconstruct X fully, any valid data
structure must encode X completely. Our approach is to determine
the number L of distinct degenerate strings possible for given pa-
rameters N and σ, and to show that distinguishing between these
instances necessitates at least log2 L bits.

Proof. Let N be sufficiently large, and let σ = ω(logN). Without loss
of generality, assume logN and N/ logN are integers. Consider the
class of degenerate strings X1, . . . ,Xn where |Xi| = logN for each i

and n = N/ logN. The number of such strings is given by(
σ

logN

)N/ logN

(1)

This is because each Xi can be formed by choosing logN characters
from σ symbols, and there are n such subsets. The number of bits
required to represent any degenerate string X must be at least:

log
(

σ

logN

)N/ logN

=
N

logN
log
(

σ

logN

)
⩾

N

logN
log
(
σ− logN

logN

)logN

= N log
(
σ− logN

logN

)
= N logσ− o(N logσ).
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Thus, any representation of X that supports subset-rank or subset-select
must use at least N logσ− o(N logσ) bits in the worst case, conclud-
ing the proof.

3.3.2.1 Reductions

Let X,D,B be as in Theorem 3.19 and consider V a data structure (for
example the one described by Jacobson in [28]), which uses n+ o(n)

bits for a bitstring of length n and supports rank and select in O(1)

time.

The reductions in Theorem 3.19 rely on the construction of two auxil-
iary strings S and R derived from the sets Xi. When n0 = 0, each Si
is the concatenation of elements in Xi (in arbitrary order), and Ri is a
single 1 followed by |Xi|− 1 0s. The global strings S and R are formed
by concatenating these sequences S1 . . . Sn and R1 . . . Rn, appending
a final 1 after Rn. The data structure consists of D built over S and
Jacobson’s structure V over R, using Db(N,σ) +N+ o(N) bits. Figure
14 from [5] illustrates this reduction for n0 = 0.

X =

{ A

C

G

} {
A

T

} {
C

} {
T

G

}

X1 X2 X3 X4

S = ACG AT C TG

R = 100 10 1 10 1

S1 S2 S3 S4

Figure 14: Left: A degenerate string X over the alphabet {A, C, G, T} where n =

4 and N = 8. Right: The reduction from Theorem 3.19 (i) on X.
White space is for illustration purposes only. [5]

Queries are supported as follows: To compute subset-rankX(i, c), first
find the start position k = select1(R, i + 1) of the representation of
Xi+1 in R. The end position of the representation of Xi in S is k− 1.
Then return rankc(S, k−1). Conversely, to compute subset-selectX(j, c),
find the index k = selectc(S, j) of the j-th occurrence of c in S. Then,
identify the corresponding set index by computing rank1(R, k). Let’s
consider the practical example in Figure 14: to compute subset-rankX(2, A),
we first compute select1(R, 3) = 6. Now we know that S2 ends at posi-
tion k−1 = 5, so we return rankA(S, 5) = 2. To compute subset-selectX(2, G)
we compute selectG(S, 2) = 8, and compute rank1(R, 8) = 4 to deter-
mine that position 8 corresponds to X4.

Since rank and select on R are constant time using V, these operations
achieve Dr(N,σ) + O(1) and Ds(N,σ) + O(1) time, as required by
Theorem 3.19 (i).

For n0 ̸= 0, empty sets are replaced by singletons containing a new
character σ+ 1, effectively reducing the problem to the n0 = 0 case
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with N ′ = N+ n0 and σ ′ = σ+ 1. This achieves the bounds of Theo-
rem 3.19 (ii).

alternative bound Let E be a bitvector of length n, where
E[i] = 1 if Xi = ∅ and E[i] = 0 otherwise. Define X ′ as the degenerate
string derived from X by removing all empty sets. The data structure
consists of reduction (i) applied to X ′, along with a bitvector structure
B built on E. This requires Db(N,σ) +N+ o(N) +Bb(n,n0) bits of
space.

To support subset-rankX(i, c), calculate k = i− rank1(E, i), which maps
Xi to its corresponding set X ′

k in the string without empty sets. Then,
return subset-rankX ′(k, c) (computed using the reduction (i) on X ′).
This operation runs in Br(n,n0) +Dr(N,σ) +O(1) time.

To support subset-selectX(j, c), first determine k = subset-selectX ′(j, c)
(using reduction (i) on X ′), and then return select0(E, k), which iden-
tifies the position of the k-th zero in E (i.e., the index of the k-th non-
empty set in the original string X). This operation runs in Bs(n,n0)+

Ds(N,σ) +O(1), achieving the stated performance bounds.

Empirical Results

Experimental evaluations by Bille et al. [5] compared subset rank
structures on E. coli and human metagenome datasets, testing both
within a k-mer index and via isolated subset-rank queries. The authors
benchmarked Subset Wavelet Tree variants [2] against their designs
based on the reductions presented in Section 3.3.2.1.

Their work introduced the dense-sparse decomposition (DSD) method,
optimizing the reduction strategy for skewed set distributions com-
mon in genomic data by handling empty, singleton, and larger sets
differently. Implementations incorporated techniques like SIMD in-
structions. Results showed that DSD structures offered competitive
space-time tradeoffs compared to SWT variants. For instance, the
SIMD-enhanced DSD was 4-7 times faster than the Concat(ef) re-
duction baseline [1] at similar space, while DSD(rrr) doubled the
query speed of Concat(ef) using comparable space. Structures like
DSD(scan) demonstrated a balance between space usage and query
time relative to other tested methods.
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S U C C I N C T W E I G H T E D D A G S F O R PAT H Q U E R I E S

The preceding chapters have established a foundation in data com-
pression (Chapter 2) and succinct data structures, particularly focus-
ing on rank and select operations (Chapter 3). These sequence-based
tools provide efficient ways to handle queries on linear data.

Building upon this foundation, we now shift our focus to graph struc-
tures, specifically directed acyclic graphs (DAGs) where nodes carry
weights. A key motivation for this shift comes from revisiting the de-
generate string problem introduced in Section 3.3. This problem can be
viewed through a different lens, that of graph representation. As we
detail below, a degenerate string and a target character can be natu-
rally modeled as a specific type of weighted DAG.

Degenerate Strings as DAGs

Given a degenerate string X = X1X2 . . . Xn over an alphabet Σ (as de-
fined in Section 3.3), we construct a weighted DAG Gc = (Vc,Ec,wc)

for a specified character c ∈ Σ. This construction provides a mapping
from the sequence structure to a graph structure.

First, we define the set of vertices Vc. Let s be a unique source vertex.
For each index k (1 ⩽ k ⩽ n) and each character a ∈ Xk, we introduce
a unique vertex, denoted as vk,a. The vertex set Vc is the union of the
source and all such vertices:

Vc = {s}∪ {vk,a | 1 ⩽ k ⩽ n,a ∈ Xk}.

These vertices vk,a represent the choice of character a at position k of
the degenerate string.

The weight function wc : Vc →N0 is defined as follows: the weight of
the source vertex s is wc(s) = 0. For any other vertex vk,a ∈ Vc \ {s},
its weight depends on whether the character a matches the target
character c:

wc(vk,a) =

1 if a = c

0 if a ̸= c
.

This function assigns a positive weight only to vertices corresponding
to the specific character c we are focusing on.

71
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The edge set Ec connects the source to the vertices representing the
first set X1, and subsequently connects vertices between adjacent po-
sitions k and k+ 1:

Ec = {(s, v1,a) | a ∈ X1}∪ {(vk,a, vk+1,b) | 1 ⩽ k < n,a ∈ Xk,b ∈ Xk+1}.

Since edges only connect vertices associated with index k to vertices
associated with index k+ 1, the graph (Vc,Ec) contains no directed
cycles and is therefore a DAG.

Figure 15 shows an example degenerate string. The weighted DAG
GA derived from this degenerate string for character c = A, follow-
ing the construction detailed above, is illustrated in Figure 16. In the
figure, the notation (k,a) inside a node identifies the vertex vk,a.

X =

{ A

C

G

} {
A

T

} { T

C

A

} {
A

G

}

X1 X2 X3 X4

Figure 15: An example degenerate string X = X1X2X3X4 over Σ =

{A,C,G, T }.

s

(1,A)

w=1

(1,C)

w=0

(1,G)

w=0

(2,A)

w=1

(2,T)

w=0

(3,T)

w=0

(3,C)

w=0

(3,A)

w=1

(4,A)

w=1

(4,G)

w=0

Figure 16: The weighted DAG GA derived from the degenerate string in Fig-
ure 15 for character c = A. Nodes visually labeled (k,a) represent
the vertices vk,a. Nodes with wA(vk,a) = 1 are yellow; those with
wA(vk,a) = 0 are gray. Edges represent the connections defined
in EA.

This graph-based perspective on degenerate strings serves as a con-
crete starting point for the core topic of this chapter: the develop-
ment of succinct data structures for general node-weighted DAGs
to support path-based queries. We address the challenge of repre-
senting an arbitrary DAG G = (V ,E,w), where each vertex v ∈ V

carries a non-negative integer weight w(v), in a compressed format
that efficiently supports queries related to cumulative path weights.
Such weighted DAGs model various phenomena beyond degenerate
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strings. For example, in bioinformatics, pangenome graphs1 can be
interpreted through this lens: if each node corresponds to a DNA se-
quence (a string over {A,C,G, T }), the weight w(v) could represent the
count of a specific nucleotide (e.g., A) within that sequence; similarly
for C, G, and T.

Our primary focus is on generalizing the rank query to this graph
setting; the select query, while definable, will not be treated further in
this work. For a given vertex N, the rank query aims to describe the
set of possible cumulative weights achievable on paths originating
from a designated source vertex s and terminating at N.

The combinatorial complexity of paths in a DAG - potentially expo-
nential in the number of vertices - makes naive approaches based
on explicit path enumeration or storage infeasible for large graphs.
This motivated us to development of a succinct data structure. Our
approach involves partitioning the vertices based on how their path
weight information is represented: some vertices (explicit) will store
this information directly, while others (implicit) will rely on indirect
derivation through references facilitated by a carefully defined succes-
sor relationship, as detailed in Section 4.2.

4.1 mathematical framework

To develop our data structure and associated algorithms, we first
establish the necessary mathematical definitions and properties con-
cerning weighted DAGs and path weights.

Weighted Directed Acyclic Graphs

We begin with the formal definition of the structure central to this
chapter.

Definition 4.1 (Weighted DAG). A node-weighted Directed Acyclic Graph
(weighted DAG) is a triple G = (V ,E,w), where:

• V is a finite set of vertices. We typically identify V with the set
{0, 1, . . . ,n − 1} where n = |V |, thereby implicitly defining a total
order on the vertices.

• E ⊆ V × V is a set of directed edges such that the graph (V ,E) con-
tains no directed cycles.

1 Pangenome graphs may contain cycles. These cycles can be addressed by either
removing them or by utilizing path information provided by modern pangenome
graph formats.
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• w : V → N0 is a weight function assigning a non-negative integer
w(v) to each vertex v ∈ V , where N0 = {0, 1, 2, . . . }.

For a vertex v ∈ V , we denote the set of its direct predecessors as

Pred(v) = {u ∈ V | (u, v) ∈ E}

and the set of its direct successors as

Succ(v) = {u ∈ V | (v,u) ∈ E}.

A vertex v with Succ(v) = ∅ is termed a sink vertex.

This definition provides the fundamental object of study. We will of-
ten rely on the acyclic property, which guarantees the existence of
topological orderings of the vertices.

Assumption 4.2 (Unique Source). Without loss of generality, we assume
that the DAG G possesses a unique source vertex s ∈ V characterized by
Pred(s) = ∅. If multiple sources exist in the original graph, a standard pre-
processing step involves introducing a virtual source vertex s ′ with w(s ′) =

0 and adding edges (s ′, v) for all original source vertices v. Throughout this
work, we assume such a transformation has been applied if necessary, and
we identify the unique source with vertex s = 0, setting w(s) = 0.

Having defined the graph structure, we now define paths and their
associated weights, which are central to the queries we aim to sup-
port.

Definition 4.3 (Path in a DAG). A path P from a vertex u to a vertex v in
G is a sequence of vertices P = (v0, v1, . . . , vk) such that v0 = u, vk = v,
and (vj−1, vj) ∈ E for all 1 ⩽ j ⩽ k. The length of the path P is k, the
number of edges. Let Path(s, v) denote the set of all paths originating from
the unique source s and terminating at v.

Definition 4.4 (Cumulative Path Weight). The cumulative weight, de-
noted W(P), for a path P = (v0 = s, . . . , vk = v) as defined in 4.3, is the
sum of the weights of the vertices along the path:

W(P) =

k∑
j=1

w(vj).
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4.1.1 Path Weight Aggregation

A key challenge lies in efficiently representing the potentially vast col-
lection of path weights terminating at each vertex. We introduce a set
associated with each vertex to capture precisely this information.

Definition 4.5 (O-Set). For each vertex v ∈ V in a weighted DAG G =

(V ,E,w) with source s, the O-set, denoted Ov ⊆N0, is defined recursively.
Let us assume a topological ordering of the vertices in V . The sets are con-
structed as follows: for the source vertex v = s:

Os = {0}.

For any other vertex v ̸= s:

Ov =
⋃

u∈Pred(v)

{y+w(v) | y ∈ Ou}.

This definition implies that Ov contains only the distinct values gen-
erated by this union process. We consider Ov to be the set of these
unique values, represented as a sorted sequence.
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Figure 17: Example of a node-weighted DAG. Each node v contains its
weight w(v). The label associated with each node represents its
calculated O-set, Ov, considered as a sorted sequence.

Example 4.6. [O-Set Calculation] Consider the weighted DAG shown
in Figure 17. Each node v is labelled with its weight w(v) inside the
circle. The label associated with each node displays its corresponding
O-set, calculated according to 4.5.

The following proposition establishes the semantic meaning of the O-
set, confirming that it correctly captures the set of all possible path
weights (as defined in 4.4) ending at a vertex.
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Proposition 4.7 (Characterization of the O-Set). For any vertex v ∈ V ,
the set Ov is equal to the set of cumulative path weights from the source s to
v:

Ov = {W(P) | P ∈ Path(s, v)}.

Proof. The proof proceeds by induction on the vertices v ∈ V , ordered
according to a topological sort of G. Base Case: For the source vertex
v = s, the only path in Path(s, s) is the trivial path P = (s). Accord-
ing to Definition 4.4, W(P) = 0. By Definition 4.5, Os = {0}. Thus, the
proposition holds for s. Inductive Step: Assume the proposition holds
for all vertices u that strictly precede v in the topological order. In
particular, this assumption holds for all u ∈ Pred(v), since the exis-
tence of an edge (u, v) implies u precedes v in any topological sort.
We must show that Ov = {W(P) | P ∈ Path(s, v)}.

(⊆) Let x ∈ Ov. By Definition 4.5, since v ̸= s, there must exist a
predecessor u ∈ Pred(v) and a value y ∈ Ou such that x = y+w(v).
By the inductive hypothesis applied to u, y = W(P ′) for some path
P ′ = (v0 = s, . . . , vk−1 = u) ∈ Path(s,u). Consider the path P =

(v0, . . . , vk−1, vk = v) formed by appending the edge (u, v) to P ′. This
is a valid path in Path(s, v). Its weight according to Definition 4.4 is

W(P) =

k∑
j=1

w(vj) =

k−1∑
j=1

w(vj)

+w(vk)

= W(P ′) +w(v) = y+w(v) = x.

Therefore, any element x ∈ Ov corresponds to the weight of some
path in Path(s, v).

(⊇) Let P = (v0 = s, . . . , vk = v) be an arbitrary path in Path(s, v).
Since v ̸= s, the path must have length k ⩾ 1. Let u = vk−1 be
the vertex immediately preceding v on this path; thus, u ∈ Pred(v).
Let P ′ = (v0, . . . , vk−1) be the subpath of P ending at u. P ′ is a
path in Path(s,u). By the inductive hypothesis, the weight W(P ′) =∑k−1

j=1 w(vj) must be an element of Ou. Let y = W(P ′). By Defini-
tion 4.5, the value y+w(v) is included in the construction of Ov. We
observe that

y+w(v) = W(P ′) +w(vk) =

k−1∑
j=1

w(vj)

+w(vk)

=

k∑
j=1

w(vj) = W(P).

Thus, the weight W(P) of any path in Path(s, v) is contained in Ov.

Since both inclusions hold, we conclude that Ov = {W(P) | P ∈
Path(s, v)}.
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An important property related to the sizes of these O-sets is mono-
tonicity along edges, which plays a fundamental role in the design of
our succinct structure.

Lemma 4.8 (O-Set Cardinality Monotonicity along Edges). Let v ∈ V

and let u ∈ Succ(v) be any direct successor of v. Then, the cardinality of
the O-set of v is less than or equal to the cardinality of the O-set of u, i.e.,
|Ov| ⩽ |Ou|.

Proof. From Definition 4.5, the O-set for u is given by

Ou =
⋃

p∈Pred(u)

{y+w(u) | y ∈ Op}.

Since u is a successor of v, it follows that v is a predecessor of u, i.e.,
v ∈ Pred(u). Therefore, the set Sv = {y+w(u) | y ∈ Ov} contributes
to the union forming Ou. Specifically

Sv ⊆
⋃

p∈Pred(u)

{y+w(u) | y ∈ Op}

Consider the mapping f : Ov → Sv defined by f(y) = y+w(u). Since
w(u) ⩾ 0, this mapping is injective. If y1 ̸= y2, then y1 +w(u) ̸=
y2 +w(u). Consequently, the number of distinct elements in Sv is ex-
actly equal to the number of distinct elements in Ov, so |Sv| = |Ov|.
The set Ou is formed by taking the union of sets like Sv for all prede-
cessors p ∈ Pred(u) and retaining only the unique values. Since the
elements generated from v’s contribution (namely, Sv) are a subset of
the elements considered for Ou, the total number of unique elements
in Ou must be at least the number of unique elements contributed by
v. Therefore, |Ou| ⩾ |Sv| = |Ov|.

4.1.2 The Rank Query

Having defined the O-set, which precisely captures the set of all possi-
ble cumulative path weights terminating at a given vertex N, we now
introduce the rank query. This query builds upon the O-set to provide
a richer description related to the path weights.

Intuitively, each value x ∈ ON represents the total accumulated weight
along some path from the source s ending exactly at N. We can think
of the weight w(N) of the node N itself as the contribution or cost
associated with the final step or "activity" performed at N. The rank
query, rankG(N), aims to capture not just the final cumulative weights
x ∈ ON, but rather the set of all possible cumulative values that could
be considered "active" or relevant during the activity represented by
node N.
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Specifically, for a path P reaching N with total weight W(P) = x,
the query considers the range of cumulative values from the point
just before incorporating N’s full weight up to the final value x. This
corresponds mathematically to the integer interval

[max(0, x−w(N) + 1), x]

This interval represents all possible integer cumulative weights ob-
served during the processing of node N along that specific path. The
rank query then aggregates these intervals over all possible paths end-
ing at N.

This intuition leads to the following formal definition:

Definition 4.9 (Rank Query on Weighted DAG). Given a vertex N ∈ V

in a weighted DAG G = (V ,E,w), the rank query, denoted rankG(N),
returns a representation of a specific set of integers derived from the O-set
ON. The target set, SN ⊆N0, is defined as the union of intervals generated
from each element x ∈ ON:

SN =
⋃

x∈ON

{z ∈N0 | max(0, x−w(N) + 1) ⩽ z ⩽ x}.

These intervals are then maximally merged, meaning rk < lk+1 − 1 for all
k = 1, . . . ,p − 1. The query result is specified as a minimal collection of
disjoint, closed integer intervals,

RN = {[l1, r1], [l2, r2], . . . , [lp, rp]}

such that their union exactly covers SN,

p⋃
k=1

[lk, rk] = SN

Example 4.10. [Rank Query Calculation] Let us compute the rank
query for vertex N = 2 in the DAG shown2 in Figure 17. From Exam-
ple 4.6, we know that the weight of node 2 is w(2) = 2, and its O-set
is O2 = {5, 9, 11}. These are the possible total weights of paths ending
at node 2. Applying Definition 4.9, we associate an interval with each
x ∈ O2, representing the values active during the processing of node
2:

• For path weight x = 5: Interval is [max(0, 5− 2+ 1), 5] = [4, 5].
These are the values active while accumulating the weight w(2) =

2 to reach 5.

• For path weight x = 9: Interval is [max(0, 9− 2+ 1), 9] = [8, 9].

2 In this example, the weight function w assigns to each vertex v a weight equal to its
identifier, i.e., w(v) = v. This is possible since it’s just a small graph and we have
taken unique weights



4.2 the succinct dag representation 79

• For path weight x = 11: Interval is [max(0, 11 − 2 + 1), 11] =

[10, 11].

The target set S2 is the union of these intervals: S2 = [4, 5] ∪ [8, 9] ∪
[10, 11]. We merge these intervals to obtain the minimal disjoint rep-
resentation R2.

• Compare [4, 5] and [8, 9]. Since 8 > 5+ 1, they remain separate.

• Compare [8, 9] and [10, 11]. Since 10 ⩽ 9+ 1, they are merged
into [8, max(9, 11)] = [8, 11].

The final minimal collection of disjoint intervals is:

RankG(2) = {[4, 5], [8, 11]}.

This collection represents the set S2 = {4, 5} ∪ {8, 9, 10, 11}, which en-
compasses all possible integer cumulative weights that could be con-
sidered active during the processing phase associated with node 2,
across all possible paths leading to it.

4.2 the succinct dag representation

As established, the O-sets can grow significantly in size, rendering
their explicit storage for all vertices prohibitive for large graphs. This
section details our proposed succinct representation strategy, designed
to mitigate this space complexity while still enabling efficient query
evaluation. The core idea is to partition the vertices and utilize indi-
rect references guided by a successor relationship.

Successor Selection Heuristic

For an implicit representation of path information, we define a func-
tion σ that designates a specific successor for each non-sink vertex.
This choice is guided by a simple heuristic aimed at minimizing the
overall space required for storing the succinct representation.

Definition 4.11 (Successor Function σ). For each vertex v ∈ V that is not
a sink (i.e., Succ(v) ̸= ∅), we select a designated successor σ(v) ∈ Succ(v)

according to the following heuristic rule:

σ(v) ∈ argmin
u∈Succ(v)

{|Ou|}.

In case of ties (multiple successors minimize the O-set cardinality) we select
the successor with the smallest vertex ID among the candidates.

The function σ is thus well-defined for all non-sink vertices.
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Node Partitioning

The successor function σ determines a partition of the vertex set V ,
influencing how path information is represented for each vertex.

Definition 4.12 (Explicit and Implicit Vertices). The set of vertices V is
partitioned into the set of explicit vertices VE and the set of implicit vertices
VI. The set VE contains all sink vertices of the graph G, formally defined as

VE = {v ∈ V | Succ(v) = ∅}.

The set VI contains all remaining vertices:

VI = V \ VE = {v ∈ V | Succ(v) ̸= ∅}.

The path weight information (O-sets) for vertices in VE is stored ex-
plicitly within the representation, while for vertices in VI, this infor-
mation is derived implicitly through references involving the desig-
nated successor σ(v).

4.2.1 Structure Components

We now outline the main components of our data structure designed
to represent the weighted DAG G = (V ,E,w) succinctly. These com-
ponents can be seen as arrays indexed by vertex ID (from 0 to n− 1),
enabling a Struct of Arrays (SoA) memory layout 3.

1. Weights W: An array storing the weight w(v) for each vertex
v ∈ V , W[v] = w(v).

2. Successor Information Σ: An array encoding the successor func-
tion σ and identifying explicit nodes. For an implicit vertex
v ∈ VI, Σ[v] stores the identifier (ID) of its designated succes-
sor σ(v). For an explicit vertex v ∈ VE, Σ[v] contains a special
marker indicating its status.

3. Associated Data D: An array or structure holding the core path
weight information, structured differently depending on whether
a vertex is explicit or implicit. For a vertex v, D[v] stores either
its full O-set (if v ∈ VE) or an offset sequence Iv (if v ∈ VI) that
enables reconstruction of Ov via reference to the data associated
with σ(v) (and eventually all its successors up to a node in VE).

3 The SoA organization can be advantageous for cache performance and allows for
independent compression strategies for different data types (weights, pointers, path
data) that we will discuss in Section 4.4.



4.2 the succinct dag representation 81

The content stored within the Associated Data component D is deter-
mined by the classification of the vertex according to the partitioning
defined in 4.12. Specifically:

For v ∈ VE (Explicit Vertex), D[v] stores the sorted sequence Ov. We
denote this stored data representation as DE(v). In practice, DE(v)

would be implemented using a suitable (potentially compressed) rep-
resentation of the sequence Ov.

For v ∈ VI (Implicit Vertex), let u = σ(v) be the designated successor.
D[v] stores the offset sequence Iv. This sequence Iv = (j0, j1, . . . , jm−1)

is a strictly monotonically increasing sequence of m = |Ov| indices.
The index jk (stored at position k in Iv) indicates that the k-th element
of Ov (let it be xk) can be computed from the jk-th element of Ou (let
it be yjk) using the reconstruction rule: xk = yjk −w(u). We denote
this stored sequence representation as DI(v).

Proposition 4.13. For any implicit node v ∈ VI, let u = σ(v) be its desig-
nated successor chosen according to Definition 4.11. Then |Ov| ⩽ |Ou|.

Proof. This is a direct consequence of Lemma 4.8. Since σ(v) is chosen
from the set Succ(v) of direct successors of v, the lemma applies,
yielding |Ov| ⩽ |Oσ(v)|.

This inequality guarantees that the length of the offset sequence Iv
(which is m = |Ov|) is no greater than the length of the sequence Ou

(which is |Ou|) from which values are derived. Furthermore, the recon-
struction rule xk = yjk −w(u) implies that each xk ∈ Ov originates
from some element in Ou (shifted by −w(u)). The offset sequence Iv
stores the index jk in Ou corresponding to the k-th element xk in
Ov.

The heuristic choice of σ(v) (4.11) aims to minimize |Oσ(v)|. While
this is a greedy, local optimization, the intuition is that choosing a
successor with a smaller O-set might lead to offset sequences Iv that
are structurally simpler or involve smaller index values, potentially
improving the compressibility of the DI(v) component. In Chapter 5,
we will discuss alternative strategies for selecting successors that con-
siders the overall structure of the DAG.

Remark 4.14. [Unique Sink Transformation] A DAG with multiple
sinks can be transformed into one with a unique sink by adding a
virtual sink t ′ (w(t ′) = 0) and connecting all original sinks to it. This
transformation preserves the O-sets for all original vertices. The main
advantage for our succinct structure is space efficiency: instead of
storing potentially numerous and large O-sets for all original sinks
(explicit nodes), we only need to store the O-set for the single virtual
sink t ′. This significantly reduces the cost associated with explicit
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nodes, which are generally more space-intensive than implicit nodes,
especially for sinks deep within the DAG. We can thus assume, with-
out loss of generality, that our DAG has a unique sink.

Example of the Structure

To illustrate the succinct representation, we apply the principles from
Section 4.2.1 to the example DAG introduced in Figure 17. The result-
ing structure is visualized in Figure 18.
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Figure 18: Illustration of the succinct DAG representation for the graph in
Figure 17. Implicit nodes are shown with standard borders, while
the explicit sink node (8) is shaded green. The source node (0) is
red. Highlighted blue edges indicate the chosen successor σ(v)

for each implicit node v, selected according to 4.11. Labels show
the stored associated data D[v]: the full O-set for the explicit node,
and the offset sequence Iv for all implicit nodes.

The construction proceeds in three main steps:

1. Partitioning: Vertices are partitioned into explicit sinks VE = {v |

Succ(v) = ∅} and implicit non-sinks VI = V \VE. In the example
(Figure 18), VE = {8}.

2. Successor Selection: For each v ∈ VI, a successor σ(v) is chosen
from Succ(v) to minimize |Oσ(v)|. The selected successors are
shown as blue edges in Figure 18. For example, σ(0) = 1, σ(1) =
7, σ(3) = 6, etc.

3. Associated Data Determination: The data D[v] depends on the ver-
tex type: For v ∈ VE, the full O-set is stored: D[v] = DE(v) = Ov.
E.g., D[8] = O8 in the figure.

For v ∈ VI, the offset sequence Iv is stored: D[v] = DI(v) = Iv.
Let u = σ(v). The sequence Iv = (j0, . . . , jm−1) where m =

|Ov|, provides the indices jk such that the k-th element xk of Ov
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is reconstructed from the jk-th element yjk of Ou via the rule
xk = yjk −w(u).

For example, consider v = 3. We have σ(3) = 6, w(6) = 6, O3 =

{3} (so x0 = 3), and O6 = {7, 9} (so y0 = 7,y1 = 9). We need j0
such that x0 = yj0 −w(6), i.e., 3 = yj0 − 6. This gives yj0 = 9,
which corresponds to index j0 = 1 in O6. Thus, I3 = (1).

The offset sequences for all implicit nodes are computed simi-
larly and displayed as labels in Figure 18.

This representation stores O-sets only for explicit (sink) nodes. For
implicit nodes, it stores references (via σ) and transformations (via
Iv and weights W), enabling reconstruction of path information, as
detailed in the next section.

4.3 query algorithms

This section details the algorithms operating on the succinct DAG
representation introduced in Section 4.2. The core idea is to recon-
struct the necessary path weight information for a queried node v by
traversing the successor path starting from v until an explicit node is
reached, using the stored offset sequences and weights to transform
the query along the way.

4.3.1 Reconstructing O-Sets

To compute queries like rank, we first need a mechanism to retrieve
elements of the O-set for any given vertex v. If v is explicit (v ∈ VE),
this is straightforward as Ov is stored directly (or in a recoverable
compressed format) in D[v]. If v is implicit (v ∈ VI), the value must
be reconstructed recursively by following the successor path defined
by σ.

Consider the task of retrieving the k-th element of Ov, denoted Ov[k].
The stored offset sequence Iv = D[v] provides the corresponding in-
dex jk = Iv[k] in the O-set of the successor u = σ(v), such that
Ov[k] = Ou[jk] −w(u). This relation forms the basis of a traversal
process. We start at node v with the target index k. We find the suc-
cessor u = σ(v) and update the target index to jk = Iv[k]. We also
accumulate the weight w(u). We repeat this process from u with the
new index jk, following the successor path v → u → · · · → e, where
e is the first explicit node encountered. Let the final index reached at
node e be K, and let the sum of weights accumulated along the path
(excluding w(v) but including w(e) if e ̸= v) be Wsum. The desired
value Ov[k] is then calculated as Oe[K] −Wsum.
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Figure 19 provides a concrete illustration of this query process, show-
ing the computation of O7[0] using the succinct structure from Fig-
ure 18.
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Figure 19: Visualization of the query process for retrieving the element at
index k = 0 of O7 using the succinct representation (Figure 18).
The query follows the successor path 7 → 9 → 5 → 8. At
each step from an implicit node v to its successor u = σ(v),
the current index kcurrent is updated using the stored offset
knext = Iv[kcurrent], and the weight w(u) is added to an accu-
mulator (sum). The path starts with k = 0 at node 7. It proceeds
to node 9 using index I7[0] = 1, accumulating w(9) = 9. Then to
node 5 using index I9[1] = 2, accumulating w(5) = 5 (total sum
14). Then to node 8 using index I5[2] = 7, accumulating w(8) = 8

(total sum 22). Node 8 is explicit, so the value at the final index 7,
O8[7] = 30, is retrieved. The result is obtained by subtracting the
total accumulated weight: 30− 22 = 8. This correctly reconstructs
O7[0].

The general procedure to compute the k-th element (0-indexed) of
Ov is formalized in Algorithm 10. It implements the traversal and
accumulation process described above, relying on accessing the struc-
ture components: weights W, successor information Σ (to get σ(v)

and check for explicit nodes), and associated data D (to retrieve I

sequences or O-sets)

The correctness of Algorithm 10 follows inductively from the defini-
tion of the offset sequence Iv. Let x

(v)
k denote the k-th element of

Ov. If v is implicit with successor u = σ(v), then by construction
x
(v)
k = x

(u)
jk

−w(u), where jk = Iv[k]. The algorithm iteratively ap-
plies this relation: if v→ u→ · · · → e is the successor path ending at
an explicit node e, and the indices transform as

k→ j
(v)
k → j

(u)

j
(v)
k

→ · · · → K
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Algorithm 10 GetValue(v,k): Compute the k-th element of Ov

Require: Vertex ID v, index k ∈ {0, . . . , |Ov|− 1}.
Ensure: The value of the k-th smallest element in Ov.

1: current_node← v

2: current_index← k

3: weight_sum← 0

4: while current_node /∈ VE do
5: successor← Σ[current_node]
6: weight_sum← weight_sum+W[successor]

7: Icurrent_node ← D[current_node]
8: next_index← Icurrent_node[current_index]
9: current_node← successor

10: current_index← next_index
11: end while
12: Oexplicit ← D[current_node)
13: base_value← Oexplicit[current_index]
14: return base_value−weight_sum

then the algorithm computes

x
(e)
K −

∑
z∈path v→e,z̸=v

w(z)

which correctly yields x
(v)
k .

To reconstruct the entire O-set for a vertex v, we can repeatedly call
GetValue(v,k) for k = 0, 1, . . . , |Ov| − 1. This requires knowing the
size |Ov|. We assume this size information is either stored explicitly
for each node or can be efficiently derived (e.g., potentially stored
alongside Iv or Ov in the D component). Let Length(v) be an oper-
ation that returns |Ov|. This procedure is implemented in Algorithm
11.

Algorithm 11 GetOSet(v): Reconstruct the O-set for vertex v

Require: Vertex ID v.
Ensure: The sorted sequence Ov.

1: size← Length(v)

2: Initialize an empty list O_list of size size.
3: for k from 0 to size− 1 do
4: value← GetValue(v, k)
5: O_list[k]← value

6: end for
7: return O_list

4.3.2 Computing the Rank Query

Equipped with the ability to reconstruct ON for any query vertex N

via Algorithm 11, we can now implement the rank query as specified
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in 4.9. The procedure involves two main steps: first, generate the ini-
tial set of intervals based on the elements of ON and the weight w(N);
second, merge these potentially overlapping or adjacent intervals into
a minimal set of disjoint intervals.

The interval merging step is a standard procedure. Given a list of in-
tervals sorted by their starting points, we can merge them efficiently.
The core idea is to iterate through the sorted intervals, merging the
current interval with the next one if they overlap or are directly adja-
cent (i.e., the start of the next interval is less than or equal to the end
of the current interval plus one). Algorithm 12 formalizes this merg-
ing process, which requires linear time with respect to the number of
initial intervals

Algorithm 12 MergeIntervals(Intervals): Merge sorted intervals

Require: A list Intervals = {[l1, r1], [l2, r2], . . . } sorted by start points li.
Ensure: A minimal list MergedIntervals of disjoint intervals

1: Initialize an empty list MergedIntervals.
2: if Intervals is not empty then
3: current_interval← Intervals[0].
4: for i from 1 to length(Intervals) − 1 do
5: next_interval← Intervals[i].
6: if next_interval.l ⩽ current_interval.r+ 1 then
7: current_interval.r← max(current_interval.r,next_interval.r)
8: else
9: Append current_interval to MergedIntervals.

10: current_interval← next_interval.
11: end if
12: end for
13: Append current_interval to MergedIntervals.
14: end if
15: return MergedIntervals.

Algorithm 13 implements the Rank query defined in 4.9. It begins by
reconstructing the set ON using GetOSet (Algorithm 11). Then, for
each path weight x ∈ ON, it generates the interval [max(0, x−wN +

1), x] according to the transformation rule specified in Definition 4.9,
where wN = W[N]. The union of these generated intervals constitutes
the set SN:

SN =
⋃

x∈ON

[max(0, x−wN + 1), x].

Since these intervals may overlap or be adjacent, they are first sorted
by their starting points. The sorted intervals are then merged via Al-
gorithm 12 (line 10) to compute the final result RN, which is the
minimal representation of SN as disjoint intervals.
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Algorithm 13 RankG(N): Compute the Rank query for vertex N

Require: Vertex ID N.
Ensure: A minimal set of disjoint intervals RN representing SN

1: ON ← GetOSet(N)

2: wN ←W[N]

3: Initialize an empty list InitialIntervals.
4: for each x ∈ ON do
5: l← max(0, x−wN + 1)

6: r← x

7: Append the interval [l, r] to InitialIntervals.
8: end for
9: Sort InitialIntervals based on the starting point l.

10: MergedIntervals←MergeIntervals(InitialIntervals)

11: return MergedIntervals.

Example: Rank Query Computation

We illustrate the execution of Algorithm 13 to compute RankG(N)

for vertex N = 2. Referring to the example structure presented in
Figure 17 and Figure 18, this vertex has weight w(2) = 2.

First, the computation requires the O-set for node 2. The algorithm
calls GetOSet(2) (Algorithm 11), which utilizes GetValue(2,k) (Al-
gorithm 10) for k = 0, 1, . . . , |O2|− 1. As described previously (Section
4.3.1 and Figure 19 show a similar process), GetValue traverses the
successor path determined by σ. For node 2, this path is 2→ 10→ 8.
By following this path, applying the offset indices I2 = D[2] and I10 =

D[10], accumulating the weights w(10) = W[10] and w(8) = W[8], and
retrieving the base value from the explicit node’s data D[8] = O8, the
set O2 = {5, 9, 11} is reconstructed.

Next, the weight of the query node, wN = w(2) = 2, is retrieved
(from W[2]).

The algorithm then proceeds to generate the initial set of intervals.
Each element x ∈ O2 is transformed into an interval [max(0, x−w2 +

1), x] using the rule from Definition 4.9:

x = 5 −→ [max(0, 5− 2+ 1), 5] = [4, 5]

x = 9 −→ [max(0, 9− 2+ 1), 9] = [8, 9]

x = 11 −→ [max(0, 11− 2+ 1), 11] = [10, 11]

This yields the initial list of intervals

InitialIntervals = {[4, 5], [8, 9], [10, 11]}.

Finally, MergeIntervals (Algorithm 12) is applied to this list4. The
intervals [8, 9] and [10, 11] merge because 10 ⩽ 9 + 1, resulting in

4 after sorting, which does not change the order in this specific case.
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[8, 11]. The interval [4, 5] remains distinct as 8 > 5+ 1. The final re-
sult returned by RankG(2) is the minimal set of disjoint intervals
R2 = {[4, 5], [8, 11]}.

4.4 compression strategies

The succinct representation presented in Section 4.2 consists of arrays
for weights (W), successor information (Σ), and associated data (D).
To further reduce the memory footprint beyond the gains achieved
by the explicit/implicit node partitioning, this section discusses com-
pression techniques for each component.

We primarily consider variable-length integer coding (Section 2.6),
Elias-Fano encoding (Section 2.6.4), and Run-Length Encoding (RLE),
aiming to preserve efficient access needed for query evaluation (Al-
gorithms 10 and 13), potentially using structures like the compressed
integer vectors from Appendix A.

4.4.1 Weights and Successors

The components W and Σ are arrays of integers, both without any
guarantee of monotonicity or specific distribution patterns a priori.

• W: An array of length n = |V |, where W[v] = w(v) ∈ N0. The
values are non-negative integers representing vertex weights.

• Σ: An array of length n, where Σ[v] stores either the integer ID
σ(v) ∈ {0, . . . ,n− 1} if v ∈ VI, or a special marker (which can
also be represented as an integer) if v ∈ VE.

Since both W and Σ are integer sequences, variable-length coding
schemes from Section 2.6 (e.g., Unary, Elias Gamma/Delta, Rice codes)
are applicable. The choice of the best code depends on the observed
distribution of weights and successor IDs.

To combine compression with efficient random access (retrieving W[v]

or Σ[v]), the compressed-intvec structure (Appendix A) is a suitable im-
plementation choice. It allows selecting an appropriate integer codec
and uses sampling to achieve constant expected time access, with
sub-linear space overhead for samples.

Alternatively, if the range of values (maximum weight or n) is small,
treating them as symbols from a small alphabet α allows using Wavelet
Trees (Section 3.2) or related structures (Section 3.2.3). These offer
O(log |α|) access time. However, for general graphs with potentially
large weights or vertex counts, direct integer coding via compressed-
intvec is often more practical.
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4.4.2 Associated Data Sequences

The associated data component D stores sequences that encode path
weight information. Specifically, for an explicit vertex v ∈ VE, D[v]

holds the O-set Ov = (x0, . . . , xm−1), and for an implicit vertex v ∈ VI,
it holds the offset sequence Iv = (j0, . . . , jm−1). Both Ov and Iv are
sequences of non-negative integers which are strictly increasing (xk <

xk+1 and jk < jk+1 respectively), as established by their definitions
and construction rules.

This strictly monotonic property makes these sequences suitable for
specialized compression techniques. Elias-Fano encoding (Section 2.6.4),
discussed previously, is a strong candidate offering both good com-
pression ratios and efficient support for operations like random ac-
cess. An alternative approach, particularly effective when sequences
contain long stretches of consecutive integers, is Run-Length Encod-
ing (RLE). We detail the RLE representation below.

Run-Length Encoding (RLE) Representation

Run-Length Encoding compresses a monotonic sequence by iden-
tifying and representing consecutive values efficiently. Consider a
generic strictly increasing sequence Y = (y0,y1, . . . ,ym−1). A run is a
maximal contiguous subsequence (yi,yi+1, . . . ,yi+l−1) where each
element is exactly one greater than its predecessor (yj+1 = yj + 1

for i ⩽ j < i+ l− 1). A run can have length l = 1. RLE represents
the sequence Y by encoding each run using its starting value and its
length.

The RLE process generates two auxiliary sequences:

• The run starts sequence, S = (s1, s2, . . . , sp), contains the first
value si of the i-th run in Y. Since runs are maximal and Y is
strictly increasing, S is also strictly increasing.

• The run lengths sequence, L = (l1, l2, . . . , lp), contains the length
li ⩾ 1 of the i-th run. L is a sequence of positive integers with
no other guaranteed properties.

The pair (S,L) allows for the exact reconstruction of Y. Algorithm 14

outlines the procedure to compute S and L from Y.

The space efficiency of RLE relies on effectively compressing the re-
sulting sequences S and L. The run starts sequence S = (s1, . . . , sp)
is strictly monotonic. Consequently, it is an ideal candidate for Elias-
Fano encoding (Section 2.6.4).
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Algorithm 14 EncodeRLE(Y): RLE encoding of a monotonic se-
quence

Require: Monotonic sequence Y = (y0,y1, . . . ,ym−1), where m = |Y|.
Ensure: Run starts sequence S, Run lengths sequence L.

1: Initialize S← ∅, L← ∅.
2: if m = 0 then
3: return (S,L)
4: end if
5: i← 0

6: while i < m do
7: current_start← yi
8: current_length← 1

9: while i+ 1 < m and yi+1 = yi + 1 do
10: current_length← current_length+ 1

11: i← i+ 1

12: end while
13: Append current_start to S.
14: Append current_length to L.
15: i← i+ 1

16: end while
17: return (S,L)

The run lengths sequence L = (l1, . . . , lp) is a sequence of positive
integers without guaranteed structure. Standard variable-length inte-
ger codes (Section 2.6), such as Elias Gamma or Delta codes, can be
applied. In practice, employing a structure like the compressed-intvec
(Appendix A) allows choosing an appropriate codec and provides
efficient random access.

Random Access with RLE Sequences

Retrieving the element yk (the element at index k in the original se-
quence Y, 0 ⩽ k < m) from the RLE representation (S,L) requires
identifying the run to which yk belongs. This necessitates finding the
unique run index i∗ (where 1 ⩽ i∗ ⩽ p) such that:

i∗−1∑
j=1

lj ⩽ k <

i∗∑
j=1

lj

where the sum is defined as 0 if i∗ = 1. Once i∗ is found, the value
yk is given by:

yk = si∗ +

k−

i∗−1∑
j=1

lj


Computing the prefix sums

∑
lj on the fly requires iterating through

L, potentially leading to O(p) time complexity for access, which is
inefficient if the number of runs p is large.
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To accelerate random access, one can precompute and store the se-
quence of prefix sums of the run lengths:

P = (p1,p2, . . . ,pp) pi =

i∑
j=1

lj.

Since lj ⩾ 1 for all j, the sequence P is strictly increasing. As a strictly
monotonic sequence, P itself can be compressed effectively, for in-
stance, using Elias-Fano encoding.

With the prefix sum sequence P available, finding the index i∗ cor-
responding to the query index k reduces to searching for the small-
est i∗ such that pi∗ > k. This is a successor search problem on the
monotonic sequence P. Using binary search on P (if stored as an
array) takes O(logp) time. If P is stored in a structure supporting
faster searches (like rank/select structures built upon certain Elias-
Fano constructions), this lookup time might be further improved. Al-
gorithm 15 formalizes access using prefix sums.

Algorithm 15 GetValueRLE(S,L,P, k): Retrieve element from RLE
Require: S = (s1, . . . , sp), L = (l1, . . . , lp), P = (p1, . . . ,pp), k ∈ [0,m− 1].
Ensure: The value yk of the element at index k.

1: Find smallest i∗ ∈ {1, . . . ,p} such that P[i∗] > k.
2: if i∗ = 1 then
3: previous_cumulative_length← 0

4: else
5: previous_cumulative_length← P[i∗ − 1]

6: end if
7: offset← k− previous_cumulative_length
8: start_value← S[i∗]
9: return start_value+ offset

Choosing Between Elias-Fano and RLE

The choice between direct Elias-Fano encoding and Run-Length En-
coding (RLE) for representing the strictly increasing sequences Ov

and Iv depends on their structure. RLE is advantageous when the se-
quence exhibits significant clustering, meaning the number of runs p

is substantially smaller than the total number of elements m (p≪ m).
In such cases, the combined compressed size of the run starts S and
run lengths L (and potentially the prefix sums P) might be less than
direct Elias-Fano encoding of the original sequence.

On the other hand, if sequences are sparse or lack significant runs
(p is close to m), direct Elias-Fano is likely more straightforward and
potentially more space-efficient.

Regardless of the chosen compression method, representing the en-
tire associated data component D practically involves concatenating
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the compressed representations of all sequences ({DE(v)}v∈VE
and

{DI(v)}v∈VI
) into a single buffer. An auxiliary index structure is then

needed to map each vertex ID v to the starting position and meta-
data of its compressed sequence. The space overhead for this index is
typically negligible compared to the compressed data itself

4.5 achieving sub-entropy space for path queries

To evaluate the space efficiency of our proposed structure, we es-
tablish a baseline based on the information content in the weighted
DAG itself. Drawing upon the principles of information theory out-
lined in Chapter 2, we can define a measure of entropy for the graph
G = (V ,E,w).

Any lossless representation of the graph G must, at a minimum, en-
code the information required to uniquely define its structure (the
edges E) and the associated weights (the function w). We formulate
a 0th-order entropy measure, denoted H0(G), as a lower bound on
the number of bits required to represent these components, assum-
ing no prior knowledge about correlations or higher-order statistical
properties.

The information content required to represent the sequence of vertex
weights (w(v))v∈V constitutes the first component. A fundamental
lower bound, denoted HW(G), can be established by considering the
minimal binary representation length for each individual weight:

HW(G) =
∑
v∈V

⌈log2(w(v) + 1)⌉ bits.

This measure reflects the space needed assuming each weight is en-
coded independently, using the minimal bits for its value, without
leveraging potential statistical correlations or distribution patterns
suitable for techniques like variable-length integer coding (Section 2.6).

The second component relates to the graph’s topology, specifically the
set of edges E. With n = |V | vertices, there exist n(n− 1) possible di-
rected edges (excluding self-loops). Encoding the topology requires
identifying which m = |E| of these potential edges are present. As-
suming all directed graphs with n vertices and m edges are equally
probable a priori, the information content is determined by the num-
ber of ways to choose these m edges. This leads to the topological
information component, HE(G):

HE(G) = log2

(
n(n− 1)

m

)
bits.
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This quantity can be approximated using Stirling’s formula,

log2

(
N

k

)
≈ k log2(N/k) +O(k)

yielding

HE(G) ≈ m log2

(
n(n− 1)

m

)
+O(m) bits

Combining these components gives us a formal definition for the 0th-
order entropy of the weighted DAG.

Definition 4.15 (0th-Order Weighted DAG Entropy). For a weighted
DAG G = (V ,E,w) with n = |V | vertices and m = |E| edges, its 0th-order
entropy H0(G) is defined as the sum of the information content required for
the weights and the topology:

H0(G) =
∑
v∈V

⌈log2(w(v) + 1)⌉︸ ︷︷ ︸
HW(G)

+ log2

(
n(n− 1)

m

)
︸ ︷︷ ︸

HE(G)

bits.

The value H0(G) represents a theoretical lower bound on the space
required by any lossless encoding of the graph (V ,E,w) based solely
on its zero-order statistics.

Our proposed succinct data structure (Section 4.2), however, is de-
signed differently. While lossless for rank query computation (4.9), it
is inherently lossy concerning the reconstruction of the original graph
G, as it does not store the complete edge set E. It retains only ver-
tex weights W, successor information Σ, and associated data D. This
distinction allows the structure’s space usage, S(G), to potentially fall
below the H0(G) bound.

To illustrate this, we analyze space performance on a weighted DAG
derived from unrolling a Bitcoin temporal network graph [33] (details
of the unrolling process are beyond the scope of this thesis), having
n = 22, 210 vertices and m = 50, 514 edges. For this specific DAG, the
calculated 0th-order entropy H0(G) amounts to 1,525,730 bits, com-
prising HW(G) = 60, 824 bits for weights and HE(G) = 1, 464, 906 bits
for topology according to 4.15.

We compare this theoretical lower bound H0(G) against theoretical
estimates of the space required by our succinct structure and alterna-
tive approaches based on precomputation.

For sequences composed of general non-negative integers x, such
as the vertex weights W, the successor identifiers Σ, or the interval
endpoints in baseline precomputation results, the space estimation is
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based on summing the minimal binary representation cost for each
integer independently. This cost is calculated as ⌈log2(x+ 1)⌉ bits per
integer x.

When representing strictly monotonic sequences, like the run start
values in RLE or interval endpoints compressed using Elias-Fano
(Section 2.6.4), our space estimation relies on its established theoreti-
cal complexity, that guarantees an upper bound of

n log2(u/n) + 2n

bits for encoding n integers within the range [0,u).

Finally, the space for the offset sequences Iv when stored using the
Run-Length Encoding (RLE) scheme described in Section 4.4 is esti-
mated by combining the previous principles. It requires the sum of
the space estimate for the strictly monotonic sequence of run start
values (using the Elias-Fano estimation) and the space estimate for
the sequence of corresponding run lengths (using the minimal binary
representation cost for each length).

Component / Method Estimated Bits

Theoretical Lower Bound (H0(G))

0th-Order Entropy Total 1,525,730

Weights Component (HW(G)) 60,824

Topology Component (HE(G)) 1,464,906

Precomputed Rank Queries

Explicit Storage (Minimal Binary) 4,854,533

Elias-Fano Compressed Storage 2,211,849

Succinct DAG Representation (RLE)

Total Space (S(G)) 602,808

Weights W (Minimal Binary) 60,824

Successors Σ (Minimal Binary) 297,700

Associated Data D (RLE Offsets) 244,284

Table 2: Theoretical space estimates (in bits) for the example Bitcoin DAG
(n = 22, 210, m = 50, 514).

Table 2 presents the results of this theoretical space estimation for
the example DAG. The total estimated space for our succinct DAG
representation using RLE for the offsets, S(G), is 602,808 bits. This
value is notably less than half of the 0th-order graph entropy H0(G)

(1,525,730 bits), demonstrating the benefit of storing only query-relevant
information rather than the full graph topology.

Furthermore, the comparison against precomputation strategies un-
derscores the practical advantages of our approach. Precomputing
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and storing all rank query results explicitly represents a baseline for
achieving minimal query time (potentially O(1) access), but at a sig-
nificant space cost, estimated at 4,854,533 bits even with minimal bi-
nary encoding. Attempting to mitigate this by compressing the pre-
computed results using Elias-Fano still requires 2,211,849 bits. While
this compression offers substantial savings over the explicit form, the
resulting space remains considerably larger than both the graph en-
tropy bound H0(G) and, more importantly, the space achieved by our
succinct structure (S(G)).

Therefore, our analysis indicates that the proposed succinct DAG rep-
resentation provides not only a mechanism to answer complex path
queries but does so with remarkable space efficiency. It avoids the pro-
hibitive space overhead associated with direct precomputation strate-
gies, offering a compact alternative that surpasses even optimized
precomputation methods in terms of storage footprint, and falls be-
low conventional entropy bounds for lossless graph representation
due to its targeted, query-specific information retention.



5
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

This thesis began by covering data compression, succinct data struc-
tures and sequence queries. Building on that foundation, Chapter 4

introduced our primary contribution: a space-efficient method for
representing node-weighted Directed Acyclic Graphs (DAGs). This
representation is specifically designed to support rank (4.9) queries,
which aggregate cumulative path weights ending at a particular ver-
tex.

The core contribution presented in Chapter 4 is a succinct represen-
tation strategy for weighted DAGs. Motivated initially by the rein-
terpretation of the degenerate string problem as a graph problem,
we generalized the approach to arbitrary weighted DAGs. The key
idea involves partitioning the vertices into two sets: explicit vertices
(VE), typically comprising the sink nodes, for which path weight in-
formation (O-sets) is stored directly; and implicit vertices (VI), for
which this information is derived indirectly. This derivation relies on
a carefully defined successor function, σ, which designates a specific
successor for each implicit node, guiding a traversal path. Associated
with each implicit node v, an offset sequence Iv stores the necessary
indices to reconstruct its O-set elements from the O-set of its desig-
nated successor σ(v). Query algorithms, notably GetValue (10) and
GetOSet (11), were presented, demonstrating how to reconstruct the
path weight information by traversing these successor paths until an
explicit node is reached.

Furthermore, we investigated compression strategies for the compo-
nents of our structure,vertex weights W, successor information Σ,
and the associated data D (containing O-sets or I sequences). Tech-
niques such as variable-length integer coding and Run-Length En-
coding, coupled with methods like Elias-Fano encoding for mono-
tonic sequences, were discussed to minimize space occupancy. A sig-
nificant finding highlighted in Section 4.5 is that the space usage of
our proposed structure can fall below the established 0th-order en-
tropy lower bound for lossless graph representation. This is possible
because our structure is tailored specifically for the rank query and
does not retain the full topological information (the complete edge
set E) of the original DAG, thereby achieving high space efficiency
for its designated task compared to both lossless graph encodings
and methods based on precomputing query results.

96
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future directions

While the developed succinct DAG representation offers substantial
space savings, a potential performance consideration arises from the
query evaluation process itself. The time required to compute a query
for an implicit node v depends directly on the length of the successor
path that must be traversed from v until an explicit node is encoun-
tered (as seen in Algorithm 10). In large or deep DAGs, these paths
could potentially become long, leading to variability and potentially
slow query times in the worst case for certain nodes. This observa-
tion motivates a primary direction for future research: enhancing the
query time predictability and efficiency by ensuring that all implicit
nodes are reasonably close to an explicit node within the successor
path structure.

To address this, instead of relying solely on the sink nodes as the base
cases for path traversal, we propose a strategy based on ensuring a
maximum traversal distance, denoted by a predefined integer k. The
core idea is to augment the original set of explicit nodes VE (initially,
the sinks) with a carefully selected subset of currently implicit nodes,
resulting in a new, larger set of explicit nodes V ′

E ⊇ VE. This target set
V ′
E must satisfy a specific property related to the successor function σ:

every vertex v that remains implicit (i.e., v ∈ V \ V ′
E) must be able to

reach some node u ∈ V ′
E by following the successor path defined by

σ, using at most k steps. More formally, let the successor path starting
from v be the sequence v0 = v, v1 = σ(v0), v2 = σ(v1), . . . . Then, for
every v ∈ V \ V ′

E, there must exist an index j, where 0 ⩽ j ⩽ k, such
that vj ∈ V ′

E.

The challenge then becomes selecting such a set V ′
E that is as small

as possible, in order to minimize the additional space overhead asso-
ciated with storing the O-sets explicitly for these newly designated
explicit nodes. This optimization problem is conceptually analogous
to finding a minimum distance-k dominating set in a graph [25]. In
the standard definition, a distance-k dominating set D is a subset
of vertices such that every vertex not in D is within a distance of k

(measured by the number of edges in a shortest path) from at least
one vertex in D. Our formulation adapts this concept: the distance
is measured specifically along the directed paths induced by the suc-
cessor function σ, and the goal is to find a set V ′

E of minimum car-
dinality that dominates all other vertices within k steps along these
σ-paths. Finding a minimum distance-k dominating set is known to
be an NP-hard problem for general graphs [25]. Furthermore, the
problem of finding a minimum cardinality set V ′

E satisfying our k-
step σ-path constraint on a DAG is also NP-hard; this can be demon-
strated through a reduction from the Set Cover problem, indicating
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that finding an optimal solution is likely computationally intractable
for large DAGs.

Consequently, a practical direction for future investigation involves
the design and analysis of efficient heuristics. Such heuristics would
aim to construct a set V ′

E satisfying the k-distance requirement along
σ-paths, while keeping its size reasonably small, even if not guar-
anteeing absolute minimality. The choice of heuristic would need to
balance the quality of the solution (size of V ′

E) with the computational
cost of finding it.

Once a suitable set V ′
E has been determined (whether optimally or via

a heuristic), the successor selection function σ needs to be redefined
to leverage this structure. For an implicit node v ∈ V \ V ′

E, the choice
of its designated successor σ(v) from the set Succ(v) should prioritize
reaching any node within the target set V ′

E as quickly as possible
along the subsequent σ-path. That is, σ(v) should ideally be selected
as the node u ∈ Succ(v) which minimizes the length of the σ-path
starting from u to the nearest node in V ′

E. Ties in path length could
be resolved using secondary criteria, such as minimizing the O-set
cardinality |Ou| (as in the original heuristic) or simply selecting the
successor with the minimum vertex identifier.

Implementing this refined strategy directly imposes an upper bound
of k on the number of iterations performed by the main loop in Al-
gorithm 10. This provides a worst-case guarantee on the time com-
plexity of the path traversal component for any rank query, making
the overall query performance significantly more predictable and uni-
form across all nodes, regardless of their position within the DAG.
The main trade-off shifts to the selection of the parameter k: smaller
values of k yield faster worst-case query times but likely necessitate
larger (and thus more space-consuming) sets V ′

E, whereas larger val-
ues of k may permit smaller sets V ′

E at the expense of a higher query
time bound.



A
E N G I N E E R I N G A C O M P R E S S E D I N T E G E R
V E C T O R

This appendix outlines the design principles and engineering con-
siderations behind compressed-intvec, a software library that we de-
veloped for the efficient storage and retrieval of integer sequences
[34]. The library leverages the variable-length integer coding tech-
niques discussed in Section 2.6 to achieve significant space savings
compared to standard fixed-width representations, while providing
mechanisms for fast random access.

bitstream abstraction Storing sequences of integers, partic-
ularly when many values are small or follow predictable patterns,
using standard fixed-width types (such as 64-bit integers) is inher-
ently wasteful. Variable-length integer codes, such as Unary, Gamma,
Delta, and Rice codes (Section 2.6), offer a solution by representing
integers using a number of bits closer to their information content,
assigning shorter codes to smaller or more frequent values.

However, codes produce binary representations of varying lengths,
not necessarily aligned to byte or machine word boundaries. There-
fore, storing a sequence of integers compressed with these methods
requires packing their binary codes contiguously into a single, un-
differentiated sequence of bits, commonly referred to as a bitstream.
This necessitates the use of specialized bitstream reading and writing
capabilities, abstracting away the complexities of bit-level manipula-
tion. The implementation described here relies on the dsi-bitstream

library for this purpose [56], ensuring that the variable-length codes
can be written to and read from memory efficiently. The fundamen-
tal requirement for correctly decoding the concatenated sequence is
the prefix-free (self-delimiting) property of the chosen integer code,
which guarantees that the end of one codeword can be determined
without ambiguity before reading the next.

random access via sampling While bitstream concatenation
enables compression, it introduces a significant challenge for random
access. Retrieving the i-th integer from the original sequence cannot
be done by calculating a simple memory offset, as the bit lengths
of preceding elements are variable. A naive approach would require
sequentially decoding the first i integers from the beginning of the
bitstream, resulting in an unacceptable O(i) access time.
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To provide efficient random access, the compressed-intvec library em-
ploys a sampling technique. During the encoding phase, the absolute
starting bit position of every k-th integer in the sequence is recorded.
These positions, or samples, are stored in an auxiliary data structure,
typically a simple array. The value k is a user-configurable sampling
parameter that dictates a trade-off between random access speed and
the memory overhead incurred by storing the samples.

To retrieve the i-th integer, the library first determines the index of
the sample corresponding to the block containing the i-th element:
sample_idx = ⌊i/k⌋. It retrieves the bit offset start_bit associated
with this sample. The bitstream reader can then jump directly to
this position. From start_bit, the decoder only needs to perform
i (mod k) sequential decoding operations to reach and return the
desired i-th integer. If k is considered a constant, this reduces the ex-
pected time complexity for random access to O(1)1. The space over-
head for the samples is approximately O((n/k) log(total_bits)), which
is generally sub-linear in the size of the compressed data for practical
values of k. The choice of k allows tuning the balance between faster
access (smaller k) and lower memory usage (larger k).

codec flexibility The compression effectiveness of various inte-
ger coding techniques, as detailed in Section 2.6, is highly contingent
upon the statistical properties of the integer sequence being encoded.
For instance, Gamma coding is generally well-suited for distributions
exhibiting decay proportional to 1/x2, Rice codes demonstrate effi-
ciency for geometrically distributed data, and Minimal Binary cod-
ing provides optimal compression for integers uniformly distributed
within a known range [0,u).

This data-dependent performance necessitates adaptability in the choice
of coding scheme (codec). The compressed-intvec library achieves this
through an abstraction mechanism based on Rust traits. These traits
define a formal interface that different codec implementations must
satisfy, allowing the library’s core logic to remain agnostic to the spe-
cific encoding details. Consequently, the user can parameterize the
compressed vector type with the most suitable codec implementation
for their particular data distribution at compile time. The selection of
an inappropriate codec relative to the data’s characteristics can sub-
stantially degrade compression performance, potentially yielding a
representation larger than the uncompressed equivalent.

1 The underlying bitstream operations and single-integer decoding are sufficiently fast
to assume that
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